tensorflow学习笔记之mnist的卷积神经网络实例

转载  2018-04-15   作者:denny402   我要评论

这篇文章主要为大家详细介绍了tensorflow学习笔记之mnist的卷积神经网络实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。

程序比较复杂,我就分成几个部分来叙述。

首先,下载并加载数据:

import tensorflow as tf 
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)
 
#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])   
b_conv1 = bias_variable([32])    
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float") 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

网络构建好后,就可以开始训练了。

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()             
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print 'step %d, training accuracy %g'%(i,train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print "test accuracy %g"%test_acc

Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。

这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。

训练20000次后,再进行测试,测试精度可以达到99%。

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 8 15:29:48 2016

@author: root
"""
import tensorflow as tf 
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)
 
#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])   
b_conv1 = bias_variable([32])    
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float") 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()             
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print('step',i,'training accuracy',train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_acc)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 利用numpy+matplotlib绘图的基本操作教程

    利用numpy+matplotlib绘图的基本操作教程

    这篇文章主要给大家介绍了利用numpy+matplotlib绘图的基本操作,文中介绍的非常详细,对大家学习matplotlib绘图具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧。
    2017-05-05
  • Python正规则表达式学习指南

    Python正规则表达式学习指南

    本文介绍了Python对于正则表达式的支持,包括正则表达式基础以及Python正则表达式标准库的完整介绍及使用示例,非常不错,具有参考借鉴价值,需要的朋友一起学习吧
    2016-08-08
  • python爬虫入门教程之点点美女图片爬虫代码分享

    python爬虫入门教程之点点美女图片爬虫代码分享

    这篇文章主要介绍了python爬虫入门教程之点点美女图片爬虫代码分享,本文以采集抓取点点网美女图片为例,需要的朋友可以参考下
    2014-09-09
  • python处理cookie详解

    python处理cookie详解

    Cookie用于服务器实现会话,用户登录及相关功能时进行状态管理,本文介绍了使用python处理cookie的方法,需要的朋友可以参考下
    2014-02-02
  • Pandas中把dataframe转成array的方法

    Pandas中把dataframe转成array的方法

    下面小编就为大家分享一篇Pandas中把dataframe转成array的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python中将字典转换为XML以及相关的命名空间解析

    Python中将字典转换为XML以及相关的命名空间解析

    这篇文章主要介绍了Python中将字典转换为XML以及相关的命名空间解析,包括使用字典创建XML等知识,需要的朋友可以参考下
    2015-10-10
  • Python递归遍历列表及输出的实现方法

    Python递归遍历列表及输出的实现方法

    这篇文章主要介绍了Python递归遍历列表及输出的实现方法,可实现递归遍历列表中的每一项,若是元祖则判断是否为基本类型然后输出,需要的朋友可以参考下
    2015-05-05
  • Python实现二分查找算法实例

    Python实现二分查找算法实例

    这篇文章主要介绍了Python实现二分查找算法,实例分析了二分查找算法的原理与相关实现技巧,需要的朋友可以参考下
    2015-05-05
  • 解析Python编程中的包结构

    解析Python编程中的包结构

    这篇文章主要介绍了解析Python编程中的包结构,包括对一些包管理工具的介绍,需要的朋友可以参考下
    2015-10-10
  • 使用Python求解最大公约数的实现方法

    使用Python求解最大公约数的实现方法

    这篇文章主要介绍了使用Python求解最大公约数的实现方法,包括用Python表示欧几里得算法和Stein算法的求解原理,需要的朋友可以参考下
    2015-08-08

最新评论