Pytorch 抽取vgg各层并进行定制化处理的方法

 更新时间:2019年08月20日 09:12:14   作者:xiaoxifei  
今天小编就为大家分享一篇Pytorch 抽取vgg各层并进行定制化处理的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

工作中有时候需要对vgg进行定制化处理,比如有些时候需要借助于vgg的层结构,但是需要使用的是2 channels输入,等等需求,这时候可以使用vgg的原始结构用class重写一遍,但是这样的方式比较慢,并且容易出错,下面给出一种比较简单的方式

def define_vgg(vgg,input_channels,endlayer,use_maxpool=False): 
  vgg_ad = copy.deepcopy(vgg)
  model = nn.Sequential()
  i = 0
  for layer in list(vgg_ad.features):
    if i > endlayer:
      break
    if isinstance(layer, nn.Conv2d) and i is 0:
      name = "conv_" + str(i)
      layer = nn.Conv2d(input_channels,
               layer.out_channels,
               layer.kernel_size,
               stride = layer.stride,
               padding=layer.padding)
      model.add_module(name, layer)
    if isinstance(layer, nn.Conv2d):
      name = "conv_" + str(i)
      model.add_module(name, layer)
 
    if isinstance(layer, nn.ReLU):
      name = "leakyrelu_" + str(i)
      layer = nn.LeakyReLU(inplace=True) 
      model.add_module(name, layer)
 
    if isinstance(layer, nn.MaxPool2d):
      name = "pool_" + str(i)
      if use_maxpool:
        model.add_module(name, layer)
      else:
        avgpool = nn.AvgPool2d(kernel_size=layer.kernel_size, stride=layer.stride, padding=layer.padding)
        model.add_module(name, avgpool)
    i += 1
  return model

函数输入项中的vgg 是直接使用的import torchvision.models.vgg16 传入的是vgg16 非预训练版本。end_layer 是需要提取的层数,这里使用了vgg.features 是指仅仅在vgg.features 上进行层的提取;也可以根据定制在classifier上进行提取。

下面是我的一个提取前7层的示例,可以使用pyCharm evaluate 上面函数返回的model,可以看到这个示例的情况,这里我的定制条件是输入通道为2 ,需要提取前7层,并且将ReLu更换为LeakyRelu。

Sequential(
 (conv_0): Conv2d(2, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_1): LeakyReLU(negative_slope=0.01, inplace)
 (conv_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_3): LeakyReLU(negative_slope=0.01, inplace)
 (pool_4): AvgPool2d(kernel_size=2, stride=2, padding=0)
 (conv_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_6): LeakyReLU(negative_slope=0.01, inplace)
 (conv_7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

以上这篇Pytorch 抽取vgg各层并进行定制化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python闭包装饰器使用方法汇总

    Python闭包装饰器使用方法汇总

    这篇文章主要介绍了Python闭包装饰器使用方法汇总,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • Python日志无延迟实时写入的示例

    Python日志无延迟实时写入的示例

    今天小编就为大家分享一篇Python日志无延迟实时写入的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python建立web服务的实例方法

    python建立web服务的实例方法

    在本篇文章里小编给大家整理的是一篇关于python如何建立web服务的相关知识点内容,有需要的朋友们可以参考下。
    2021-04-04
  • Python制作简易聊天器,搭建UDP网络通信模型

    Python制作简易聊天器,搭建UDP网络通信模型

    这篇文章主要介绍了Python制作简易聊天器,搭建UDP网络通信模型,用UDP建立网络模型来完成一个简单的聊天器,感兴趣的小伙伴可以参考一下,希望对你有所帮助
    2022-01-01
  • 使用Python中PDB模块中的命令来调试Python代码的教程

    使用Python中PDB模块中的命令来调试Python代码的教程

    这篇文章主要介绍了使用Python中PDB模块中的命令来调试Python代码的教程,包括设置断点来修改代码等、对于Python团队项目工作有一定帮助,需要的朋友可以参考下
    2015-03-03
  • Django路由层如何获取正确的url

    Django路由层如何获取正确的url

    本文介绍路由层是如何进行路由匹配的,以diango1.x版本为例,文中通过示例代码介绍的非常详细,文中通过示例代码介绍的非常详细,
    2021-07-07
  • 详细分析Python垃圾回收机制

    详细分析Python垃圾回收机制

    这篇文章主要介绍了Python垃圾回收机制的相关资料,文中讲解非常详细,示例代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • 解决python中os.system调用exe文件的问题

    解决python中os.system调用exe文件的问题

    这篇文章主要介绍了解决python中os.system调用exe文件的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 简单了解python数组的基本操作

    简单了解python数组的基本操作

    这篇文章主要介绍了简单了解python数组的基本操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • 开源软件包和环境管理系统Anaconda的安装使用

    开源软件包和环境管理系统Anaconda的安装使用

    Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。
    2017-09-09

最新评论