Python编程pytorch深度卷积神经网络AlexNet详解

 更新时间:2021年10月11日 11:47:34   作者:Supre_yuan  
AlexNet和LeNet的架构非常相似。这里我们提供了一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年的ImageNet图像识别挑战赛。

下图展示了从LeNet(左)到AlexNet(right)的架构。

在这里插入图片描述

AlexNet和LeNet的设计理念非常相似,但也有如下区别:

  • AlexNet比相对较小的LeNet5要深得多。
  • AlexNet使用ReLU而不是sigmoid作为其激活函数。

 容量控制和预处理

AlexNet通过dropout控制全连接层的模型复杂度,而LeNet只使用了权重衰减。为了进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁剪和变色。这使得模型更加健壮,更大的样本量有效地减少了过拟合。

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
	# 这里,我们使用一个11*11的更大窗口来捕捉对象
	# 同时,步幅为4,以减少输出的高度和宽度
	# 另外,输出通道的数目远大于LeNet
	nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
	nn.MaxPool2d(kernel_size=3, stride=2)
	# 减少卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
	nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
	nn.MaxPool2d(kernel_size=3, stride=2)
	# 使用三个连续的卷积层和较小的卷积窗口
	# 除了最后的卷积层,输出通道的数量进一步增加
	# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
	nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
	nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
	nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
	nn.MaxPool2d(kernel_size=3, stride=2),
	nn.Flatten(),
	# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过度拟合
	nn.Linear(6400, 4096), nn.ReLU(),
	nn.Dropout(p=0.5),
	nn.Linear(4096, 4096), nn.ReLU(),
	nn.Dropout(p=0.5),
	# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数位10
	nn.Linear(4096, 10)
)

我们构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状。它与上面离得最近的图中的AlexNet架构相匹配。

X = torch.randn(1, 1, 224, 224)
for layer in net:
	X = layer(X)
	print(layer.__class__.__name__,'Output shape:\t', X.shape)
Conv2d Output shape: torch.Size([1, 96, 54, 54])
ReLU Output shape: torch.Size([1, 96, 54, 54])
MaxPool2d Output shape: torch.Size([1, 96, 26, 26])
Conv2d Output shape: torch.Size([1, 256, 26, 26])
ReLU Output shape: torch.Size([1, 256, 26, 26])
MaxPool2d Output shape: torch.Size([1, 256, 12, 12])
Conv2d Output shape: torch.Size([1, 384, 12, 12])
ReLU Output shape: torch.Size([1, 384, 12, 12])
Conv2d Output shape: torch.Size([1, 384, 12, 12])
ReLU Output shape: torch.Size([1, 384, 12, 12])
Conv2d Output shape: torch.Size([1, 256, 12, 12])
ReLU Output shape: torch.Size([1, 256, 12, 12])
MaxPool2d Output shape: torch.Size([1, 256, 5, 5])
Flatten Output shape: torch.Size([1, 6400])
Linear Output shape: torch.Size([1, 4096])
ReLU Output shape: torch.Size([1, 4096])
Dropout Output shape: torch.Size([1, 4096])
Linear Output shape: torch.Size([1, 4096])
ReLU Output shape: torch.Size([1, 4096])
Dropout Output shape: torch.Size([1, 4096])
Linear Output shape: torch.Size([1, 10])

读取数据集

在这里将AlexNet直接应用于Fashion-MNIST的识别,但这里有一个问题,那就是Fashion-MNIST图像的分辨率( 28 × 28 28\times28 28×28像素)低于ImageNet图像。为了解决这个问题,我们将它们增加到 224 × 224 224\times224 224×224(通常来讲这不是一个明智的做法,但我们在这里这样做是为了有效使用AlexNet结构)。我们使用d2l.load_data_fashion_mnist函数中的resize参数执行此调整。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

现在,我们可以开始训练AlexNet了,与LeNet相比,这里的主要变化是使用更小的学习速率训练,这是因为网络更深更广、图像分辨率更高,训练卷积伸进网络就更昂贵。

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.330, train acc 0.879, test acc 0.877
4163.0 examples/sec on cuda:0

在这里插入图片描述

以上就是Python编程pytorch深度卷积神经网络AlexNet详解的详细内容,更多关于pytorch卷积神经网络的资料请关注脚本之家其它相关文章!

相关文章

  • python自动化unittest yaml使用过程解析

    python自动化unittest yaml使用过程解析

    这篇文章主要介绍了python自动化unittest yaml使用过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    计算机视觉这种技术可以将静止图像或视频数据转换为一种决策或新的表示。所有这样的转换都是为了完成某种特定的目的而进行的,本篇我们来学习下如何对图像进行锐化处理以及如何进行边缘检测
    2021-11-11
  • Tensorflow分类器项目自定义数据读入的实现

    Tensorflow分类器项目自定义数据读入的实现

    这篇文章主要介绍了Tensorflow分类器项目自定义数据读入的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • Django 联表查询操作方法

    Django 联表查询操作方法

    作为一个django使用的新手,在做练手项目中对联表查询感觉比较生疏,最近两天整理了一些连表查询应用场景和使用方法以及无法使用django中ORM操作的原生查询,对Django 联表查询操作感兴趣的朋友跟随小编一起看看吧
    2023-09-09
  • Python+OpenCV实现相机标定的方法详解

    Python+OpenCV实现相机标定的方法详解

    opencv中内置了张正友的棋盘格标定法,通过一些姿态各异的棋盘格图像,可以标定相机的内外参数,本文为大家介绍OpenCV进行相机标定的具体方法,希望对大家有所帮助
    2023-05-05
  • Python 检查数组元素是否存在类似PHP isset()方法

    Python 检查数组元素是否存在类似PHP isset()方法

    isset方法来检查数组元素是否存在,在Python中无对应函数,在Python中一般可以通过异常来处理数组元素不存在的情况,而无须事先检查
    2014-10-10
  • 详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法

    详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法

    这篇文章主要介绍了详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python数学建模PuLP库线性规划进阶基于字典详解

    Python数学建模PuLP库线性规划进阶基于字典详解

    在大规模的规划问题中,这样逐个定义变量和设置模型参数非常繁琐,效率很低。Pulp 库提供了一种快捷方式,可以结合 Python语言的循环和容器,使用字典来创建问题
    2021-10-10
  • python 镜像环境搭建总结

    python 镜像环境搭建总结

    这篇文章主要介绍了python 镜像环境搭建总结,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • python打包exe文件并隐藏执行CMD命令窗口问题

    python打包exe文件并隐藏执行CMD命令窗口问题

    这篇文章主要介绍了python打包exe文件并隐藏执行CMD命令窗口问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01

最新评论