C/C++ 原生API实现线程池的方法

 更新时间:2021年11月01日 17:00:00   作者:lyshark  
线程池,简单来说就是有一堆已经创建好的线程,接下来通过本文给大家介绍C/C++ 原生API实现线程池的方法,感兴趣的朋友跟随小编一起看看吧

线程池有两个核心的概念,一个是任务队列,一个是工作线程队列。任务队列负责存放主线程需要处理的任务,工作线程队列其实是一个死循环,负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费l者的模型。在一些高并发的网络应用中,线程池也是常用的技术。陈硕大神推荐的C++多线程服务端编程模式为:one loop per thread + thread pool,通常会有单独的线程负责接受来自客户端的请求,对请求稍作解析后将数据处理的任务提交到专门的计算线程池。

ThreadPool 线程池同步事件: 线程池内的线程函数同样支持互斥锁,信号控制,内核事件控制,临界区控制.

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

unsigned long g_count = 0;

// --------------------------------------------------------------
// 线程池同步-互斥量同步
void NTAPI TaskHandlerMutex(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	ReleaseMutexWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestMutex()
{
	// 创建互斥量
	HANDLE hMutex = CreateMutex(NULL, FALSE, NULL);

	PTP_WORK pool = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerMutex, &hMutex, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pool);
	}

	WaitForThreadpoolWorkCallbacks(pool, FALSE);
	CloseThreadpoolWork(pool);
	CloseHandle(hMutex);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-事件内核对象
void NTAPI TaskHandlerKern(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	SetEventWhenCallbackReturns(Instance, *(HANDLE*)Context);
}

void TestKern()
{
	HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
	SetEvent(hEvent);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerKern, &hEvent, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	CloseThreadpoolWork(pwk);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-信号量同步
void NTAPI TaskHandlerSemaphore(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	WaitForSingleObject(*(HANDLE *)Context, INFINITE);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	ReleaseSemaphoreWhenCallbackReturns(Instance, *(HANDLE*)Context, 1);
}

void TestSemaphore()
{
	// 创建信号量为100
	HANDLE hSemaphore = CreateSemaphore(NULL, 0, 100, NULL);

	ReleaseSemaphore(hSemaphore, 10, NULL);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerSemaphore, &hSemaphore, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	CloseThreadpoolWork(pwk);
	CloseHandle(hSemaphore);

	printf("相加后 ---> %d \n", g_count);
}

// --------------------------------------------------------------
// 线程池同步-临界区
void NTAPI TaskHandlerLeave(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)
{
	// 锁定资源
	EnterCriticalSection((CRITICAL_SECTION*)Context);

	for (int x = 0; x < 100; x++)
	{
		printf("线程ID: %d ---> 子线程: %d \n", GetCurrentThreadId(), x);
		g_count = g_count + 1;
	}

	// 解锁资源
	LeaveCriticalSectionWhenCallbackReturns(Instance, (CRITICAL_SECTION*)Context);
}

void TestLeave()
{
	CRITICAL_SECTION cs;
	InitializeCriticalSection(&cs);

	PTP_WORK pwk = CreateThreadpoolWork((PTP_WORK_CALLBACK)TaskHandlerLeave, &cs, NULL);

	for (int i = 0; i < 1000; i++)
	{
		SubmitThreadpoolWork(pwk);
	}

	WaitForThreadpoolWorkCallbacks(pwk, FALSE);
	DeleteCriticalSection(&cs);
	CloseThreadpoolWork(pwk);

	printf("相加后 ---> %d \n", g_count);
}

int main(int argc,char *argv)
{
	//TestMutex();
	//TestKern();
	//TestSemaphore();
	TestLeave();

	system("pause");
	return 0;
}

简单的IO读写:

#include <Windows.h>
#include <iostream>
#include <stdlib.h>

// 简单的异步文本读写
int ReadWriteIO()
{
	char enContent[] = "hello lyshark";
	char deContent[255] = { 0 };

	// 异步写文件
	HANDLE hFileWrite = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, FILE_FLAG_SEQUENTIAL_SCAN, NULL);
	if (INVALID_HANDLE_VALUE == hFileWrite)
	{
		return 0;
	}

	WriteFile(hFileWrite, enContent, strlen(enContent), NULL, NULL);
	FlushFileBuffers(hFileWrite);

	CancelSynchronousIo(hFileWrite);
	CloseHandle(hFileWrite);

	// 异步读文件

	HANDLE hFileRead = CreateFile(L"d://test.txt", GENERIC_READ, 0, NULL, OPEN_ALWAYS, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFileRead)
	{
		return 0;
	}

	ReadFile(hFileRead, deContent, 255, NULL, NULL);
	CloseHandle(hFileRead);
	std::cout << "读出内容: " << deContent << std::endl;
	return 1;
}


// 通过IO获取文件大小
int GetFileSize()
{
	HANDLE hFile = CreateFile(L"d://test.txt", 0, 0, NULL, OPEN_EXISTING, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFile)
	{
		return 0;
	}

	ULARGE_INTEGER ulFileSize;
	ulFileSize.LowPart = GetFileSize(hFile, &ulFileSize.HighPart);

	LARGE_INTEGER lFileSize;
	BOOL ret = GetFileSizeEx(hFile, &lFileSize);

	std::cout << "文件大小A: " << ulFileSize.QuadPart << " bytes" << std::endl;
	std::cout << "文件大小B: " << lFileSize.QuadPart << " bytes" << std::endl;
	CloseHandle(hFile);

	return 1;
}

// 通过IO设置文件指针和文件尾
int SetFilePointer()
{
	char deContent[255] = { 0 };
	DWORD readCount = 0;

	HANDLE hFile = CreateFile(L"d://test.txt", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS, NULL, NULL);
	if (INVALID_HANDLE_VALUE == hFile)
	{
		return 0;
	}

	LARGE_INTEGER liMove;

	// 设置移动位置
	liMove.QuadPart = 2;
	SetFilePointerEx(hFile, liMove, NULL, FILE_BEGIN);

	// 移动到文件末尾
	SetEndOfFile(hFile);

	ReadFile(hFile, deContent, 255, &readCount, NULL);
	std::cout << "移动指针后读取: " << deContent << " 读入长度: " << readCount << std::endl;

	CloseHandle(hFile);

	// 设置编码格式
	_wsetlocale(LC_ALL, L"chs");
	setlocale(LC_ALL, "chs");
	wprintf(L"%s", deContent);
}

int main(int argc,char *argv)
{
	// 读写IO
	ReadWriteIO();

	// 取文件长度
	GetFileSize();

	// 设置文件指针
	SetFilePointer();

	return 0;
}

到此这篇关于C/C++ 原生API实现线程池的文章就介绍到这了,更多相关C++实现线程池内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C语言实现银行管理系统

    C语言实现银行管理系统

    这篇文章主要为大家详细介绍了C语言实现银行管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • C++实现String类的方法详解

    C++实现String类的方法详解

    在C语言中,没有专门用来表示字符串的类型。虽然C语言为字符串提供了一系列的库函数,但这些函数与字符串这个类型是分开的。所以在C++中封装了一个string类,来帮助我们操作字符串,本文就为大家提供了实现String类的方法,需要的可以参考一下
    2022-08-08
  • C语言数据结构实例讲解单链表的实现

    C语言数据结构实例讲解单链表的实现

    单链表是后面要学的双链表以及循环链表的基础,要想继续深入了解数据结构以及C++,我们就要奠定好这块基石!接下来就和我一起学习吧
    2022-03-03
  • c++实现跳跃表(Skip List)的方法示例

    c++实现跳跃表(Skip List)的方法示例

    跳表(skiplist)是一个非常优秀的数据结构,实现简单,插入、删除、查找的复杂度均为O(logN),下面这篇文章主要介绍了c++实现跳跃表(Skip List)的相关资料,需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-09-09
  • C语言 CRITICAL_SECTION用法案例详解

    C语言 CRITICAL_SECTION用法案例详解

    这篇文章主要介绍了C语言 CRITICAL_SECTION用法案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-08-08
  • 浅谈C++ 虚函数分析

    浅谈C++ 虚函数分析

    这篇文章主要介绍了浅谈C++ 虚函数分析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • C语言数据在内存中的存储详解

    C语言数据在内存中的存储详解

    本篇文章是C语言编程篇,主要为大家介绍C语言编程中数据在内存中存储解析,有需要的朋友可以借鉴参考下,希望可以有所帮助
    2021-09-09
  • 详解C++异常处理三个重要组成部分

    详解C++异常处理三个重要组成部分

    这篇文章主要为大家介绍了C++异常处理的三个重要组成部分示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-04-04
  • C++ map的简单使用实现

    C++ map的简单使用实现

    map是STL的一个关联容器,它以<key,value>一对一的形式存储,且map的内部自建一个红黑树,使得其可以自动排序,本文就介绍一下C++ map的简单使用,感兴趣的可以了解一下
    2021-05-05
  • C语言光标信息CONSOLE_CURSOR_INFO类型详解

    C语言光标信息CONSOLE_CURSOR_INFO类型详解

    本文详细讲解了C语言光标信息CONSOLE_CURSOR_INFO类型,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-12-12

最新评论