C++深入探究二阶构造模式的原理与使用

 更新时间:2022年04月23日 09:32:01   作者:清风自在 流水潺潺  
C++中经常会因为调用系统资源失败导致出现BUG,所以在类调用构造函数需要分配系统资源时会出现BUG,从而导致类对象虽然被创建,但是只是个半成品,为了避免这种情况需要使用二阶构造模式

一、构造函数的回顾

关于构造函数

  • 类的构造函数用于对象的初始化
  • 构造函数与类同名并且没有返回值
  • 构造函数在对象定义时自动被调用

问题

  • 如何判断构造函数的执行结果?
  • 在构造函数中执行 return 语句会发生什么?
  • 构造函数执行结束是否意味着对象构造成功?

下面看一个异常的构造函数:

#include <stdio.h>
class Test
{
    int mi;
    int mj;
    bool mStatus;
public:
    Test(int i, int j) : mStatus(false)
    {
        mi = i;
        return;
        mj = j;
        mStatus = true;
    }
    int getI()
    {
        return mi;
    }
    int getJ()
    {
        return mj;
    }
    int status()
    {
        return mStatus;
    }
};
int main()
{  
    Test t1(1, 2);
    if( t1.status() )
    {
        printf("t1.mi = %d\n", t1.getI());
        printf("t1.mj = %d\n", t1.getJ());
    }
    return 0;
}

运行结果如下,可以看到,没有输出,遇到 return 构造函数就结束了:

构造函数

  • 只提供自动初始化成员变量的机会
  • 不能保证初始化逻辑一定成功
  • 执行 return 语句后构造函数立即结束

结论:构造函数能决定的只是对象的初始状态,而不是对象的诞生!!

二、半成品对象

半成品对象的概念

  • 初始化操作不能按照预期完成而得到的对象
  • 半成品对象是合法的 C++ 对象,也是 Bug 的重要来源

下面来看一个半成品对象的危害:

IntArray.h:

#ifndef _INTARRAY_H_
#define _INTARRAY_H_
class IntArray
{
private:
    int m_length;
    int* m_pointer;
public:
    IntArray(int len);
    IntArray(const IntArray& obj);
    int length();
    bool get(int index, int& value);
    bool set(int index ,int value);
    ~IntArray();
};
#endif

IntArray.c:

(注意:m_pointer = 0; //假设 m_pointer 为空指针,用来模拟申请内存失败的情况)

#include "IntArray.h"
IntArray::IntArray(int len)
{
    m_pointer = 0;  //假设 m_pointer 为空指针,用来模拟申请内存失败的情况    
    if( m_pointer )
    {
        for(int i=0; i<len; i++)
        {
            m_pointer[i] = 0;
        }   
    } 
    m_length = len;
}
IntArray::IntArray(const IntArray& obj)
{
    m_length = obj.m_length; 
    m_pointer = new int[obj.m_length];   
    for(int i=0; i<obj.m_length; i++)
    {
        m_pointer[i] = obj.m_pointer[i];
    }
}
int IntArray::length()
{
    return m_length;
}
bool IntArray::get(int index, int& value)
{
    bool ret = (0 <= index) && (index < length());   
    if( ret )
    {
        value = m_pointer[index];
    }  
    return ret;
}
bool IntArray::set(int index, int value)
{
    bool ret = (0 <= index) && (index < length());
    if( ret )
    {
        m_pointer[index] = value;
    }
    return ret;
}
IntArray::~IntArray()
{
    delete[]m_pointer;
}

main.cpp:

#include <stdio.h>
#include "IntArray.h"
int main()
{
    IntArray a(5);     
    printf("a.length = %d\n", a.length());    
    a.set(0, 1);  
    return 0;
}

输出结果如下:

产生段错误是因为前面令m_pointer = 0; 模拟内存申请不成功。但是在实际工程中,不是每次申请内存都不成功,所以很难重现,堪称最难调试的 bug。

三、二阶构造

工程开发中的构造过程可分为

  • 资源无关的初始化操作
  • 不可能出现异常情况的操作

需要使用系统资源的操作

可能出现异常情况,如:内存申请,访问文件

二阶构造示例一

二阶构造示例二

下面初探一下二阶构造函数:

#include <stdio.h>
class TwoPhaseCons 
{
private:
    TwoPhaseCons() // 第一阶段构造函数
    {   
    }
    bool construct() // 第二阶段构造函数
    { 
        return true; 
    }
public:
    static TwoPhaseCons* NewInstance(); // 对象创建函数
};
TwoPhaseCons* TwoPhaseCons::NewInstance() 
{
    TwoPhaseCons* ret = new TwoPhaseCons();
    // 若第二阶段构造失败,返回 NULL    
    if( !(ret && ret->construct()) ) 
    {
        delete ret;
        ret = NULL;
    }
    return ret;
}
int main()
{
    TwoPhaseCons* obj = TwoPhaseCons::NewInstance();
    printf("obj = %p\n", obj);
    delete obj;
    return 0;
}

运行结果如下,指针的值被打印出来,意味着可以得到一个合法可用的对象,这个对象位于堆空间上:

如果我们就不想用二阶构造,自己申请堆空间,如下:

TwoPhaseCons* obj = new NewInstance();

就会报错,因为构造函数是私有的:

如果第二阶段的构造不成功:

    bool construct() // 第二阶段构造函数
    { 
        return false; 
    }

输出结果如下,打印结果为空:

所以二阶构造的意义就是要么得到一个合法可用的对象,要么返回空。二阶构造用于杜绝半成品对象。

所以前面写的可能产生半成品对象的代码可以写成:

IntArray.h:

#ifndef _INTARRAY_H_
#define _INTARRAY_H_
class IntArray
{
private:
    int m_length;
    int* m_pointer;
    IntArray(int len);
    IntArray(const IntArray& obj);
    bool construct();
public:
    static IntArray* NewInstance(int length); 
    int length();
    bool get(int index, int& value);
    bool set(int index ,int value);
    ~IntArray();
};
#endif

IntArray.c:

#include "IntArray.h"
IntArray::IntArray(int len)
{
    m_length = len;
}
bool IntArray::construct()
{
    bool ret = true;
    m_pointer = new int[m_length];
    if( m_pointer )
    {
        for(int i=0; i<m_length; i++)
        {
            m_pointer[i] = 0;
        }
    }
    else
    {
        ret = false;
    }
    return ret;
}
IntArray* IntArray::NewInstance(int length) 
{
    IntArray* ret = new IntArray(length);
    if( !(ret && ret->construct()) ) 
    {
        delete ret;
        ret = 0;
    }
    return ret;
}
int IntArray::length()
{
    return m_length;
}
bool IntArray::get(int index, int& value)
{
    bool ret = (0 <= index) && (index < length());
    if( ret )
    {
        value = m_pointer[index];
    }
    return ret;
}
bool IntArray::set(int index, int value)
{
    bool ret = (0 <= index) && (index < length());
    if( ret )
    {
        m_pointer[index] = value;
    }
    return ret;
}
IntArray::~IntArray()
{
    delete[]m_pointer;
}

main.c:

#include <stdio.h>
#include "IntArray.h"
int main()
{
    IntArray* a = IntArray::NewInstance(5);    
    printf("a.length = %d\n", a->length());
    a->set(0, 1);
    for(int i=0; i<a->length(); i++)
    {
        int v = 0;
        a->get(i, v);
        printf("a[%d] = %d\n", i, v);
    }
    delete a;
    return 0;
}

输出结果如下:

工程里面对象往往是巨大的,因此不适合放在栈空间,而适合放在堆空间里面,所以二阶构造模式对于工程开发非常有用。

四、小结

  • 构造函数只能决定对象的初始化状态
  • 构造函数中初始化操作的失败不影响对象的诞生
  • 初始化不完全的半成品对象是 Bug 的重要来源
  • 二阶构造人为的将初始化过程分为两部分
  • 二阶构造能够确保创建的对象都是完整初始化的

到此这篇关于C++深入探究二阶构造模式的原理与使用的文章就介绍到这了,更多相关C++二阶构造模式内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • ipv6实现tcp编程示例

    ipv6实现tcp编程示例

    这篇文章主要介绍了ipv6实现tcp编程示例,需要的朋友可以参考下
    2014-03-03
  • epoll多路复用的一个实例程序(C实现)

    epoll多路复用的一个实例程序(C实现)

    这篇文章主要为大家详细介绍了epoll多路复用的一个实例程序,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • C语言多线程开发中死锁与读写锁问题详解

    C语言多线程开发中死锁与读写锁问题详解

    死锁是指多个线程因竞争资源而造成的僵局(互相等待);有些公共数据修改的机会很少,但其读的机会很多。并且在读的过程中会伴随着查找,给这种代码加锁会降低我们的程序效率。读写锁可以解决这个问题;
    2022-05-05
  • C语言计算余数的图文步骤

    C语言计算余数的图文步骤

    在本篇文章里小编给大家整理了一篇关于C语言计算余数的图文步骤内容,有需要的朋友们可以参考下。
    2020-02-02
  • C++学习之命名空间详解

    C++学习之命名空间详解

    C++中,命名空间(namespace)是一个重要的概念。命名空间可以为函数、变量、类等定义作用域,避免与其他定义的名称发生冲突。下面我们就来了解一下如何使用C++命名空间,以及一些常见的操作吧
    2023-04-04
  • 详解C语言中的常量指针和指针常量

    详解C语言中的常量指针和指针常量

    这篇文章主要介绍了详解C语言中的常量指针和指针常量,包括其之间的区别是C语言入门学习中的基础知识,需要的朋友可以参考下
    2015-08-08
  • C语言与C++内存管理超详细分析

    C语言与C++内存管理超详细分析

    C 语言内存管理指对系统内存的分配、创建、使用这一系列操作。在内存管理中,由于是操作系统内存,使用不当会造成毕竟麻烦的结果。本文将从系统内存的分配、创建出发,并且使用例子来举例说明内存管理不当会出现的情况及解决办法
    2022-05-05
  • C语言的分支和循环语句你了解吗

    C语言的分支和循环语句你了解吗

    这篇文章主要为大家详细介绍了C语言的分支和循环语句,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02
  • 解析C++引用

    解析C++引用

    引用是C++引入的新语言特性,是C++常用的一个重要内容之一。在工作中发现,许多人使用它仅仅是想当然,在某些微妙的场合,很容易出错,究其原由,大多因为没有搞清本源。在本篇中将对引用进行详细讨论,希望对大家更好地理解和使用引用起到抛砖引玉的作用
    2021-06-06
  • C++ 中strcpy标准写法实例详解

    C++ 中strcpy标准写法实例详解

    这篇文章主要介绍了C++ 中strcpy标准写法实例详解的相关资料,需要的朋友可以参考下
    2017-06-06

最新评论