python神经网络Xception模型复现详解

 更新时间:2022年05月06日 15:32:07   作者:Bubbliiiing  
这篇文章主要为大家介绍了python神经网络Xception模型复现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的

什么是Xception模型

Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作。

在讲Xception模型之前,首先要讲一下什么是depthwise separable convolution(深度可分离卷积块)。

深度可分离卷积块由两个部分组成,分别是深度可分离卷积和1x1普通卷积,深度可分离卷积的卷积核大小一般是3x3的,便于理解的话我们可以把它当作是特征提取,1x1的普通卷积可以完成通道数的调整。

下图为深度可分离卷积块的结构示意图:

深度可分离卷积块的目的是使用更少的参数来代替普通的3x3卷积。

我们可以进行一下普通卷积和深度可分离卷积块的对比:

假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。

应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。

可以看出来depthwise separable convolution可以减少模型的参数。

通俗地理解深度可分离卷积结构块,就是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,再利用1x1的卷积调整厚度。

(视频中有些许错误,感谢zl960929的提醒,Xception使用的深度可分离卷积块SeparableConv2D也就是先深度可分离卷积再进行1x1卷积。)

对于Xception模型而言,其一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow;

分为14个block,其中Entry flow中有4个、Middle flow中有8个、Exit flow中有2个。

具体结构如下:

其内部主要结构就是残差卷积网络搭配SeparableConv2D层实现一个个block,在Xception模型中,常见的两个block的结构如下。这个主要在Entry flow和Exit flow中:

这个主要在Middle flow中:

Xception网络部分实现代码

#-------------------------------------------------------------#
#   Xception的网络部分
#-------------------------------------------------------------#
from keras.preprocessing import image
from keras.models import Model
from keras import layers
from keras.layers import Dense,Input,BatchNormalization,Activation,Conv2D,SeparableConv2D,MaxPooling2D
from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
def Xception(input_shape = [299,299,3],classes=1000):
    img_input = Input(shape=input_shape)
    #--------------------------#
    # Entry flow
    #--------------------------#
    #--------------------#
    # block1
    #--------------------#
    # 299,299,3 -> 149,149,64
    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)
    #--------------------#
    # block2
    #--------------------#
    # 149,149,64 -> 75,75,128
    residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)
    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
    x = layers.add([x, residual])
    #--------------------#
    # block3
    #--------------------#
    # 75,75,128 -> 38,38,256
    residual = Conv2D(256, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)
    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
    x = layers.add([x, residual])
    #--------------------#
    # block4
    #--------------------#
    # 38,38,256 -> 19,19,728
    residual = Conv2D(728, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)
    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
    x = layers.add([x, residual])
    #--------------------------#
    # Middle flow
    #--------------------------#
    #--------------------#
    # block5--block12
    #--------------------#
    # 19,19,728 -> 19,19,728
    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)
        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)
        x = layers.add([x, residual])
    #--------------------------#
    # Exit flow
    #--------------------------#
    #--------------------#
    # block13
    #--------------------#
    # 19,19,728 -> 10,10,1024
    residual = Conv2D(1024, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)
    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
    x = layers.add([x, residual])
    #--------------------#
    # block14
    #--------------------#
    # 10,10,1024 -> 10,10,2048
    x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)
    x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
    inputs = img_input
    model = Model(inputs, x, name='xception')
    model.load_weights("xception_weights_tf_dim_ordering_tf_kernels.h5")
    return model

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x
if __name__ == '__main__':
    model = Xception()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)
    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds))

预测所需的已经训练好的Xception模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。

预测结果为:

Predicted: [[('n02504458', 'African_elephant', 0.47570863), ('n01871265', 'tusker', 0.3173351), ('n02504013', 'Indian_elephant', 0.030323735), ('n02963159', 'cardigan', 0.0007877756), ('n02410509', 'bison', 0.00075616257)]]

以上就是python神经网络Xception模型复现详解的详细内容,更多关于Xception模型的复现详解的资料请关注脚本之家其它相关文章!

相关文章

  • 对python sklearn one-hot编码详解

    对python sklearn one-hot编码详解

    今天小编就为大家分享一篇对python sklearn one-hot编码详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • pandas数据的合并与拼接的实现

    pandas数据的合并与拼接的实现

    Pandas包的merge、join、concat方法可以完成数据的合并和拼接,本文主要介绍了这三种实现方式,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • python并发编程多进程 互斥锁原理解析

    python并发编程多进程 互斥锁原理解析

    这篇文章主要介绍了python并发编程多进程 互斥锁原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 利用Anaconda完美解决Python 2与python 3的共存问题

    利用Anaconda完美解决Python 2与python 3的共存问题

    Anaconda 是 Python 的一个发行版,如果把 Python 比作 Linux,那么 Anancoda 就是 CentOS 或者 Ubuntu,下面这篇文章主要给大家介绍了利用Anaconda完美解决Python 2与python 3共存问题的相关资料,文中介绍的非常详细,需要的朋友可以参考借鉴。
    2017-05-05
  • python更改已存在excel文件的方法

    python更改已存在excel文件的方法

    今天小编就为大家分享一篇python更改已存在excel文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python目标检测yolo2详解及预测代码复现

    python目标检测yolo2详解及预测代码复现

    这篇文章主要为大家介绍了python目标检测yolo2详解及其预测代码复现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • python单例模式原理与创建方法实例分析

    python单例模式原理与创建方法实例分析

    这篇文章主要介绍了python单例模式原理与创建方法,结合实例形式分析了Python单例模式的概念、原理、定义、使用方法及相关操作注意事项,需要的朋友可以参考下
    2019-10-10
  • requests.gPython 用requests.get获取网页内容为空 ’ ’问题

    requests.gPython 用requests.get获取网页内容为空 ’ ’问题

    这篇文章主要介绍了requests.gPython 用requests.get获取网页内容为空 ’ ’,温行首先举例说明,具有一定得参考价值,需要的小伙伴可以参考一下
    2022-01-01
  • python批量赋值操作实例

    python批量赋值操作实例

    今天小编就为大家分享一篇python批量赋值操作实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python如何求取逆序数

    Python如何求取逆序数

    这篇文章主要介绍了Python如何求取逆序数问题,具有很好的参考价值,希望大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12

最新评论