Golang pprof性能测试与分析讲解

 更新时间:2023年04月04日 11:37:02   作者:qq_42170897  
刚开始接触go就遇到了一个内存问题,在进行内存分析的时候发现了一下比较好的工具,在此留下记录,下面这篇文章主要给大家介绍了关于go性能分析工具pprof的性能测试,需要的朋友可以参考下

一、性能分析类型

1.CPU性能分析

CPU性能分析是最常见的性能分析类型。启动CPU分析时,运行时每隔10ms中断一次,采集正在运行协程的堆栈信息。

程序运行结束后,可以根据收集的数据,找到最热代码路径。

一个函数在分析阶段出现的次数越多,则该函数的代码路径(code path)花费的时间占总运行时间的比重越大。

2.内存性能分析

内存性能分析记录堆内存分配信息,忽略栈内存的分配。

内存分析启动时,默认每1000次采样1次,这个比例是可以调整的。因为内存性能分析是基于采样的,因此基于内存分析数据来判断程序所有的内存使用情况是很困难的。

3.阻塞性能分析

阻塞性能分析是go特点的。

阻塞性能分析用来记录一个协程用来等待共享资源所花费的时间,这用来判断程序并发瓶颈是很有用。阻塞的场景包括:

  • 在没有缓冲的信道上发送或接受数据。
  • 在空的信道上接受数据或在满的信道上发送数据。
  • 尝试获取一个已被其他协程占用的排他锁。

一般情况下,当所有的 CPU 和内存瓶颈解决后,才会考虑这一类分析。

二、cpu性能分析

1.生成pporf

go 性能分析接口位于runtime/pprof 中:

测试代码:生成5组数据,进行冒泡排序:

main.go

// main.go
package main
import (
	"math/rand"
	"time"
)
func generate(n int) []int {
	rand.Seed(time.Now().UnixNano())
	nums := make([]int, 0)
	for i := 0; i < n; i++ {
		nums = append(nums, rand.Int())
	}
	return nums
}
func bubbleSort(nums []int) {
	for i := 0; i < len(nums); i++ {
		for j := 1; j < len(nums)-i; j++ {
			if nums[j] < nums[j-1] {
				nums[j], nums[j-1] = nums[j-1], nums[j]
			}
		}
	}
}
func main() {
	n := 10
	for i := 0; i < 5; i++ {
		nums := generate(n)
		bubbleSort(nums)
		n *= 10
	}
}

想要度量这段代码的性能,只需要在main函数最前加两行代码:

main()

import (
	"math/rand"
	"os"
	"runtime/pprof"
	"time"
)
func main() {
	pprof.StartCPUProfile(os.Stdout)
	defer pprof.StopCPUProfile()
	n := 10
	for i := 0; i < 5; i++ {
		nums := generate(n)
		bubbleSort(nums)
		n *= 10
	}
}

go run main.go > cpu.pprof

当然也可以将输出直接导入到文件中:

2.分析数据

此时得到cpu.pprof 文件:

go tool pprof -http=:9999 cpu.pprof 如果提升Graphviz没有安装: apt installgraphviz (ubuntu)

访问localhost:9999 得到:

除了在网页中查看外,还可以使用交互式命令进行查看:

go tool pprof cpu.pprof

使用top 查看到 bubbleSort函数占用cpu最多。

还可以使用top --cum,按照cum(累计消耗)排序:

使用help 查看帮助:

三、内存性能分析

下面为一段字符串拼接代码,我们对它进行内存分析:

package main
import (
	"math/rand"
	"github.com/pkg/profile"
)
const letterBytes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
func randomString(n int) string {
	b := make([]byte, n)
	for i := range b {
		b[i] = letterBytes[rand.Intn(len(letterBytes))]
	}
	return string(b)
}
func concat(n int) string {
	s := ""
	for i := 0; i < n; i++ {
		s += randomString(n)
	}
	return s
}
func main() {
	concat(100)
}

我们使用另外一个性能分析库"github.com/pkg/profile" 它内部封装了 runtime/pprof 接口,使用起来更加简单。

cpu性能分析:

defer profile.Start().Stop()

内存性能分析:

defer profile.Start(profile.MemProfile, profile.MemProfileRate(1)).Stop()

profile包会自动在/tmp目录下生成profile文件

go tool pprof -http=:9999 /tmp/profile575547387/mem.pprof

可以看见concat 消耗了 524 KB, 而randomString消耗了 21KB,为什么相差这么大呢?

因为go中的字符串不可修改,使用+ 连接字符串会导致重新生成新的字符串,将 + 两边的子字符串拷贝到新的字符串去。那这种设计多次字符串拼接的场景该如何优化呢?使用strings.Builder

优化后的代码:

package main
import (
	"math/rand"
	"strings"
	"github.com/pkg/profile"
)
const letterBytes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
func randomString(n int) string {
	b := make([]byte, n)
	for i := range b {
		b[i] = letterBytes[rand.Intn(len(letterBytes))]
	}
	return string(b)
}
func concat(n int) string {
	sb := new(strings.Builder)
	for i := 0; i < n; i++ {
		sb.WriteString(randomString(n))
	}
	return sb.String()
}
func main() {
	defer profile.Start(profile.MemProfile, profile.MemProfileRate(1)).Stop()
	concat(100)
}

优化后可以看到concat 函数使用了71KB 内存,randomString函数使用了 21kb 内存。

四、benchmark 生成 profile

使用benchmark 进行基准测试时,除了直接查看结果,还可以生成profile

testing支持cpu、mem、block

  • -cpuprofile=$FILE
  • -memprofile=$FILE, -memprofilerate=N 调整记录速率为原来的 1/N。
  • -blockprofile=$FILE

fib_test.go

package fib
import "testing"
func fib(n int) int {
	if n == 0 || n == 1 {
		return n
	}
	return fib(n-2) + fib(n-1)
}
func BenchmarkFib(b *testing.B) {
	for n := 0; n < b.N; n++ {
		fib(30) // run fib(30) b.N times
	}
}

go test -bench=. test/bench/fib -cpuprofile=cpu.pprof

go tool pprof -test cpu.pprof

go tool pprof 支持多种输出格式:

go tool pprof

到此这篇关于Golang pprof性能测试与分析讲解的文章就介绍到这了,更多相关Go pprof性能测试内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Go并发:使用sync.WaitGroup实现协程同步方式

    Go并发:使用sync.WaitGroup实现协程同步方式

    这篇文章主要介绍了Go并发:使用sync.WaitGroup实现协程同步方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • Go语言中XML文件的读写操作

    Go语言中XML文件的读写操作

    本文主要介绍了Go语言中XML文件的读写操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • Golang logrus 日志包及日志切割的实现

    Golang logrus 日志包及日志切割的实现

    这篇文章主要介绍了Golang logrus 日志包及日志切割的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Golang当中的定时器实例详解

    Golang当中的定时器实例详解

    这篇文章主要给大家介绍了关于Golang当中定时器的相关资料,定时器的实现大家应该都遇到过,最近在学习golang,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-07-07
  • Go语言学习之链表的使用详解

    Go语言学习之链表的使用详解

    链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。本文将详细为大家介绍Go语言中链表的使用,感兴趣的可以了解一下
    2022-04-04
  • 浅析Go语言中的map数据结构是如何实现的

    浅析Go语言中的map数据结构是如何实现的

    在 Go 中,map 是一种用于存储键值对的数据结构,它提供了一种快速查找和访问数据的方式,下面我们就来看看Go语言中是如何实现map数据结构的吧
    2024-03-03
  • 浅谈Go语言中的次方用法

    浅谈Go语言中的次方用法

    这篇文章主要介绍了浅谈Go语言中的次方用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • 深入了解Golang 哈希算法之MD5、SHA-1和SHA-256

    深入了解Golang 哈希算法之MD5、SHA-1和SHA-256

    哈希算法是计算机科学领域中一种重要的技术,它将任意长度的输入数据映射为固定长度的哈希值,在本篇文章中,我们将深入探讨Golang中的哈希算法,从多个方面介绍其详细内容,希望通过本文的阅读你将对 Golang哈希算法有更全面的理解
    2023-05-05
  • 详解Go语言各种常见类型的默认值和判空方法

    详解Go语言各种常见类型的默认值和判空方法

    本文主要介绍了详解Go语言各种常见类型的默认值和判空方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • 深入理解GO语言的面向对象

    深入理解GO语言的面向对象

    相信很多人当初开发go语言的时候就是因为C++的特性太过于繁杂,从而使得很多C++的开发者因为C++的特性而头疼,go语言成功的精简了C++的特性,使其很简洁,很少的特性,却可以完成很多的事情。下面我们就来详细理解下GO语言的面向对象。
    2016-10-10

最新评论