Python可视化函数plt.scatter详解

 更新时间:2023年04月10日 10:03:54   作者:无水先生  
这篇文章主要介绍了Python可视化函数plt.scatter详解, 关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例,需要的朋友可以参考下

一、说明

       关于matplotlib的scatter函数有许多活动参数,如果不专门注解,是无法掌握精髓的,本文专门针对scatter的参数和调用说起,并配有若干案例。

二、函数和参数详解

2.1 scatter函数原型

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)

2.2 参数详解

属性参数意义
坐标x,y输入点列的数组,长度都是size
点大小s点的直径数组,默认直径20,长度最大size
点颜色c点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。
点形状marker点的样式,默认小圆圈 'o'。
调色板cmap

Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组时才使用。如果没有申明就是 image.cmap。

亮度(1)normNormalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
亮度(2)vmin,vmax亮度设置,在 norm 参数存在时会忽略。
透明度alpha透明度设置,0-1 之间,默认 None,即不透明
线linewidths标记点的长度
颜色

edgecolors

颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

plotnonfinite

布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

**kwargs

其他参数。

2.3 其中散点的形状参数marker如下:

2.4 其中颜色参数c如下:

三、画图示例

3.1 关于坐标x,y和s,c

import numpy as np
import matplotlib.pyplot as plt
 
# Fixing random state for reproducibility
np.random.seed(19680801)
 
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)          # 颜色可以随机
area = (30 * np.random.rand(N))**2  # 点的宽度30,半径15
 
plt.scatter(x, y, s=area, c=colors, alpha=0.5)  
plt.show()

        注意:以上核心语句是:

plt.scatter(x, y, s=area, c=colors, alpha=0.5, marker=",")

        其中:x,y,s,c维度一样就能成。

3.2 多元高斯的情况

import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(8,6))
#Generating a Gaussion dataset:
#creating random vectors from the multivariate normal distribution
#given mean and covariance
mu_vec1=np.array([0,0])
cov_mat1=np.array([[1,0],[0,1]])
X=np.random.multivariate_normal(mu_vec1,cov_mat1,500)
R=X**2
R_sum=R.sum(axis=1)
plt.scatter(X[:,0],X[:,1],color='green',marker='o', =32.*R_sum,edgecolor='black',alpha=0.5)
 
plt.show()

3.3  绘制例子

from matplotlib import pyplot as plt
import numpy as np
# Generating a Gaussion dTset:
#Creating random vectors from the multivaritate normal distribution
#givem mean and covariance
 
mu_vecl = np.array([0, 0])
cov_matl = np.array([[2,0],[0,2]])
 
x1_samples = np.random.multivariate_normal(mu_vecl, cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2, cov_matl +0.2, 100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4, cov_matl +0.4, 100)
 
plt.figure(figsize = (8, 6))
 
plt.scatter(x1_samples[:,0], x1_samples[:, 1], marker='x',
           color = 'blue', alpha=0.7, label = 'x1 samples')
plt.scatter(x2_samples[:,0], x1_samples[:,1], marker='o',
           color ='green', alpha=0.7, label = 'x2 samples')
plt.scatter(x3_samples[:,0], x1_samples[:,1], marker='^',
           color ='red', alpha=0.7, label = 'x3 samples')
plt.title('Basic scatter plot')
plt.ylabel('variable X')
plt.xlabel('Variable Y')
plt.legend(loc = 'upper right')
 
plt.show()
 
 
    import matplotlib.pyplot as plt
    
    fig,ax = plt.subplots()
    
    ax.plot([0],[0], marker="o",  markersize=10)
    ax.plot([0.07,0.93],[0,0],    linewidth=10)
    ax.scatter([1],[0],           s=100)
    
    ax.plot([0],[1], marker="o",  markersize=22)
    ax.plot([0.14,0.86],[1,1],    linewidth=22)
    ax.scatter([1],[1],           s=22**2)
    
    plt.show()
![image.png](http://upload-images.jianshu.io/upload_images/8730384-8d27a5015b37ee97.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
 
    import matplotlib.pyplot as plt
    
    for dpi in [72,100,144]:
    
        fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
        ax.set_title("fig.dpi={}".format(dpi))
    
        ax.set_ylim(-3,3)
        ax.set_xlim(-2,2)
    
        ax.scatter([0],[1], s=10**2, 
                   marker="s", linewidth=0, label="100 points^2")
        ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
                   marker="s", linewidth=0, label="100 pixels^2")
    
        ax.legend(loc=8,framealpha=1, fontsize=8)
    
        fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
    
    plt.show() 

3.4 绘图例3

import matplotlib.pyplot as plt
 
for dpi in [72,100,144]:
 
    fig,ax = plt.subplots(figsize=(1.5,2), dpi=dpi)
    ax.set_title("fig.dpi={}".format(dpi))
 
    ax.set_ylim(-3,3)
    ax.set_xlim(-2,2)
 
    ax.scatter([0],[1], s=10**2, 
               marker="s", linewidth=0, label="100 points^2")
    ax.scatter([1],[1], s=(10*72./fig.dpi)**2, 
               marker="s", linewidth=0, label="100 pixels^2")
 
    ax.legend(loc=8,framealpha=1, fontsize=8)
 
    fig.savefig("fig{}.png".format(dpi), bbox_inches="tight")
 
plt.show() 

3.5  同心绘制

plt.scatter(2, 1, s=4000, c='r')
plt.scatter(2, 1, s=1000 ,c='b')
plt.scatter(2, 1, s=10, c='g')

3.6 有标签绘制

import matplotlib.pyplot as plt
 
x_coords = [0.13, 0.22, 0.39, 0.59, 0.68, 0.74,0.93]
y_coords = [0.75, 0.34, 0.44, 0.52, 0.80, 0.25,0.55]
 
fig = plt.figure(figsize = (8,5))
 
plt.scatter(x_coords, y_coords, marker = 's', s = 50)
for x, y in zip(x_coords, y_coords):
    plt.annotate('(%s,%s)'%(x,y), xy=(x,y),xytext = (0, -10), textcoords = 'offset points',ha = 'center', va = 'top')
plt.xlim([0,1])
plt.ylim([0,1])
plt.show()

3.7 直线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
#    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
    return -x_1 + 1
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

3.8 曲线划分

# 2-category classfication with random 2D-sample data
# from a multivariate normal distribution
 
import numpy as np
from matplotlib import pyplot as plt
 
def decision_boundary(x_1):
    """Calculates the x_2 value for plotting the decision boundary."""
    return 4 - np.sqrt(-x_1**2 + 4*x_1 + 6 + np.log(16))
 
# Generating a gaussion dataset:
# creating random vectors from the multivariate normal distribution
# given mean and covariance
 
mu_vec1 = np.array([0,0])
cov_mat1 = np.array([[2,0],[0,2]])
x1_samples = np.random.multivariate_normal(mu_vec1, cov_mat1,100)
mu_vec1 = mu_vec1.reshape(1,2).T # TO 1-COL VECTOR
 
mu_vec2 = np.array([1,2])
cov_mat2 = np.array([[1,0],[0,1]])
x2_samples = np.random.multivariate_normal(mu_vec2, cov_mat2, 100)
mu_vec2 = mu_vec2.reshape(1,2).T # to 2-col vector
 
# Main scatter plot and plot annotation
 
f, ax = plt.subplots(figsize = (7, 7))
ax.scatter(x1_samples[:, 0], x1_samples[:,1], marker = 'o',color = 'green', s=40)
ax.scatter(x2_samples[:, 0], x2_samples[:,1], marker = '^',color = 'blue', s =40)
plt.legend(['Class1 (w1)', 'Class2 (w2)'], loc = 'upper right')
plt.title('Densities of 2 classes with 25 bivariate random patterns each')
plt.ylabel('x2')
plt.xlabel('x1')
ftext = 'p(x|w1) -N(mu1=(0,0)^t, cov1 = I)\np.(x|w2) -N(mu2 = (1, 1)^t), cov2 =I'
plt.figtext(.15,.8, ftext, fontsize = 11, ha ='left')
 
#Adding decision boundary to plot
 
x_1 = np.arange(-5, 5, 0.1)
bound = decision_boundary(x_1)
plt.plot(x_1, bound, 'r--', lw = 3)
 
x_vec = np.linspace(*ax.get_xlim())
x_1 = np.arange(0, 100, 0.05)
 
plt.show()

到此这篇关于Python可视化函数plt.scatter详解的文章就介绍到这了,更多相关Python plt.scatter内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 7个Python中的隐藏小技巧分享

    7个Python中的隐藏小技巧分享

    Python 是每个程序员都喜欢的语言,因为它易于编码和易于阅读的语法。但是,你知道 python 有一些很酷的技巧可以用来让事情变得更简单吗?在今天的内容中,我将与你分享7 个你可能从未使用过的Python 技巧
    2023-03-03
  • 使用OpenCV获取图片连通域数量,并用不同颜色标记函

    使用OpenCV获取图片连通域数量,并用不同颜色标记函

    这篇文章主要介绍了使用OpenCV获取图片连通域数量,并用不同颜色标记函,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 解决tensorflow训练时内存持续增加并占满的问题

    解决tensorflow训练时内存持续增加并占满的问题

    今天小编就为大家分享一篇解决tensorflow训练时内存持续增加并占满的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • python tkinter实现屏保程序

    python tkinter实现屏保程序

    这篇文章主要为大家详细介绍了python tkinter实现屏保程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-07-07
  • 理解生产者消费者模型及在Python编程中的运用实例

    理解生产者消费者模型及在Python编程中的运用实例

    生产者消费者模型一般用于体现程序的多线程并发性,Python的多线程虽然受到GIL控制,但依然可以构建队列来简单体现出模型的思路,这里我们就来共同理解生产者消费者模型及在Python编程中的运用实例:
    2016-06-06
  • Python快速排序算法实例分析

    Python快速排序算法实例分析

    这篇文章主要介绍了Python快速排序算法,简单说明了快速排序算法的原理、实现步骤,并结合具体实例分析了Python实现快速排序的相关操作技巧,需要的朋友可以参考下
    2017-11-11
  • Python经验总结:两种Type Error问题

    Python经验总结:两种Type Error问题

    这篇文章主要介绍了Python经验总结:两种Type Error问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • 解决PyCharm 中写 Turtle代码没提示以及标黄的问题

    解决PyCharm 中写 Turtle代码没提示以及标黄的问题

    这篇文章主要介绍了解决PyCharm 中写 Turtle代码没提示以及标黄的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python中的__SLOTS__属性使用示例

    Python中的__SLOTS__属性使用示例

    这篇文章主要介绍了Python中的__SLOTS__属性使用示例,本文直接给出代码示例,需要的朋友可以参考下
    2015-02-02
  • python中networkx函数的具体使用

    python中networkx函数的具体使用

    本文主要介绍了python中networkx函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02

最新评论