SPFA算法的实现原理及其应用详解

 更新时间:2023年05月12日 15:01:48   作者:繁依Fanyi  
SPFA算法,全称为Shortest Path Faster Algorithm,是求解单源最短路径问题的一种常用算法,本文就来聊聊它的实现原理与简单应用吧

一、前言

SPFA算法,全称为Shortest Path Faster Algorithm,是求解单源最短路径问题的一种常用算法,它可以处理有向图或者无向图,边权可以是正数、负数,但是不能有负环。

二、SPFA 算法

1、SPFA算法的基本流程

1. 初始化

首先我们需要起点s到其他顶点的距离初始化为一个很大的值(比如9999999,像是 JAVA 中可以设置 Integer.MAX_VALUE 来使),并将起点s的距离初始化为0。同时,我们还需要将起点s入队。

2. 迭代

每次从队列中取出一个顶点u,遍历所有从u出发的边,对于边(u,v)(其中v为从u可以到达的顶点),如果s->u->v的路径长度小于s->v的路径长度,那么我们就更新s->v的路径长度,并将v入队。

3. 循环

不断进行步骤2,直到队列为空。

4. 判断

最后,我们可以得到从起点s到各个顶点的最短路径长度,如果存在无穷小的距离,则说明从起点s无法到达该顶点。

其次,需要注意的是,SPFA算法中存在负环问题。如果存在负环,则算法会陷入死循环。因此,我们需要添加一个计数器,记录每个点进队列的次数。当一个点进队列的次数超过图中节点个数时,就可以判定存在负环。

2、代码详解

以下是使用Java实现 SPFA算法的代码,其中Graph类表示有向图或无向图,Vertex类表示图中的一个顶点,Edge类表示图中的一条边。

import java.util.*;
class Graph {   // 图
    private List<Vertex> vertices;  // 顶点集
    public Graph() {
        vertices = new ArrayList<Vertex>();
    }
    public void addVertex(Vertex v) {   // 添加顶点
        vertices.add(v);
    }   // 添加顶点
    public List<Vertex> getVertices() { // 返回顶点
        return vertices;
    }   // 获取顶点集
}
class Vertex {  // 点
    private int id; // 点 id
    private List<Edge> edges;   // 连接到该顶点的边
    private int distance;   // 从源顶点到该顶点的最短距离,MAX_VALUE init
    private boolean visited;    // 在图的遍历过程中是否访问过该顶点,false init
    public Vertex(int id) {
        this.id = id;
        edges = new ArrayList<Edge>();
        distance = Integer.MAX_VALUE;
        visited = false;
    }
    public int getId() {    // 获取 id
        return id;
    }
    public void addEdge(Edge e) {   // 将连接到该顶点边添加到列表中
        edges.add(e);
    }   // 添加图到边
    public List<Edge> getEdges() {  // 获取连接到该顶点的边集
        return edges;
    }   // 获取图中边
    public int getDistance() {  // 获取从源顶点到该顶点的最短距离
        return distance;
    }   // 获取源顶点到该顶点的最短距离
    public void setDistance(int distance) { //设置最短距离
        this.distance = distance;
    }   // 设置源顶点到该顶点的最短距离
    public boolean isVisited() {    // 获取在图的遍历过程中是否访问过该点
        return visited;
    }   // 获取图遍历过程中是否访问过该点
    public void setVisited(boolean visited) {   // 设置在图的遍历过程中是否访问过该点
        this.visited = visited;
    }   // 设置图遍历过程中是否访问过该点
}
class Edge {    // 边
    private Vertex source;  // 源顶点
    private Vertex destination; // 目标顶点
    private int weight; // 边的权重
    public Edge(Vertex source, Vertex destination, int weight) {
        this.source = source;
        this.destination = destination;
        this.weight = weight;
    }
    public Vertex getSource() { // 返回源顶点
        return source;
    }   // 获取源点
    public Vertex getDestination() {    // 返回目标顶点
        return destination;
    }   // 获取目标顶点
    public int getWeight() {    // 获取边的权重
        return weight;
    }   // 获取边的权重
}
// SPFA 算法
public class SPFA { 
    public static void spfa(Graph graph, Vertex source) {
        // 初始化
        Queue<Vertex> queue = new LinkedList<Vertex>(); // 初始化一个顶点队列,使用该队列来跟中需要处理的顶点 
        for (Vertex v : graph.getVertices()) {  // 初始化最短距离和是否访问过该点
            v.setDistance(Integer.MAX_VALUE);
            v.setVisited(false);
        }
        source.setDistance(0); // 将源顶点到自身的最短距离设为0
        queue.add(source);  // 将源顶点添加到队列中
        // 迭代
        int count = 0;  // 用于检测图中的负环,count超过图中顶点的总数,抛出异常
        // 查找从一个源顶点到图中所有其它顶点的最短路径
        while (!queue.isEmpty()) {  
            Vertex u = queue.poll();    // 存储SPFA算法正在处理的顶点,poll 方法将下一个顶点从队列中取出
            u.setVisited(false);    // 标记该顶点为未访问,以便在算法中再次对其处理
            // 查找部分,循环遍历当前顶点 u 的所有边
            for (Edge e : u.getEdges()) {   
                Vertex v = e.getDestination();  // 返回边 e 的目标顶点给 v
                int distance = u.getDistance() + e.getWeight(); // 计算源顶点到目标顶点的距离
                if (distance < v.getDistance()) {
                    v.setDistance(distance);    // 更新最短距离
                    if (!v.isVisited()) {   // 如果该顶点未被访问过
                        queue.add(v);   // 将该顶点添加到队列中
                        v.setVisited(true); // 标记该顶点已被访问
                        count++;    // 负环 + 1
                        if (count > graph.getVertices().size()) {   // 检查 SPFA 算法处理的顶点数是否大于图中顶点总数
                            throw new RuntimeException("Negative cycle detected");
                        }
                    }
                }
            }
        }
    }
    public static void main(String[] args) {
        // 构造图
        Graph graph = new Graph();
        // 构造顶点
        Vertex s = new Vertex(0);
        Vertex a = new Vertex(1);
        Vertex b = new Vertex(2);
        Vertex c = new Vertex(3);
        Vertex d = new Vertex(4);
        // 点加边
        s.addEdge(new Edge(s, a, 2));
        s.addEdge(new Edge(s, c, 1));
        a.addEdge(new Edge(a, b, 3));
        b.addEdge(new Edge(b, d, 2));
        c.addEdge(new Edge(c, d, 1));
        // 边加点
        graph.addVertex(s);
        graph.addVertex(a);
        graph.addVertex(b);
        graph.addVertex(c);
        graph.addVertex(d);
        // 调用SPFA算法求解最短路径
        spfa(graph, s);
        // 输出结果
        for (Vertex v :graph.getVertices()) {
            System.out.println("Shortest distance from source to vertex " + v.getId() + " is " + v.getDistance()); 
        } 
    } 
}

上面的代码实现了SPFA算法,并计算了从给定源点到图中其他所有顶点的最短路径。主要思路如下:

  • 初始化:将所有顶点的距离设置为正无穷,将源点的距离设置为0,将源点加入队列。
  • 迭代:从队列中取出一个顶点u,遍历它的所有邻居v。如果u到源点的距离加上u到v的边的权重小于v的距离,则更新v的距离,并将v加入队列中。如果v已经在队列中,则不需要再次添加。
  • 如果队列为空,则算法结束。如果队列非空,则回到步骤2。

SPFA算法的时间复杂度取决于负权边的数量。如果图中没有负权边,算法的时间复杂度是O(E),其中E是边的数量。但是如果图中有负权边,算法的时间复杂度将达到O(VE),其中V是顶点的数量,E是边的数量。因此,为了避免算法的时间复杂度变得非常高,应尽可能避免在图中使用负权边。

三、SPFA 算法已死

这个问题引发了很多OI选手和出题人的讨论,虽然 SPFA 算法在实际应用中具有一定的优势,但它也有一些缺点,导致它被称为"已死"的算法之一。以下是几个原因:

  • 可能会进入负环:SPFA 算法可以处理负权边,但是如果有负权环,算法将无法结束,因为每次都会沿着负权环一遍一遍地更新距离,导致算法陷入死循环。
  • 时间复杂度不稳定:在最坏情况下,SPFA 算法的时间复杂度可以达到 O ( V E ) O(VE) O(VE),其中 V V V 和 E E E 分别是图中的顶点数和边数。而在最好情况下,时间复杂度只有 O ( E ) O(E) O(E)。因此,SPFA 算法的时间复杂度是不稳定的。
  • 存在更好的算法:对于单源最短路径问题,已经有更好的算法出现,如 Dijkstra 算法和 Bellman-Ford 算法。这些算法在时间复杂度和稳定性方面都比 SPFA 算法更优秀。

虽然 SPFA 算法在某些情况下可以发挥出优势,但是它的缺点也是无法忽视的,而且已经有更好的算法出现,不少大佬也或多或少的对 SPFA 算法进行了优化,更多优化的内容以及最短路径算法可以在论文中找到。因此,SPFA 算法已经不是首选算法,也可以说是已经“死亡”了。

到此这篇关于SPFA算法的实现原理及其应用详解的文章就介绍到这了,更多相关SPFA算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 老生常谈Log4j和Log4j2的区别(推荐)

    老生常谈Log4j和Log4j2的区别(推荐)

    下面小编就为大家带来老生常谈Log4j和Log4j2的区别(推荐)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-04-04
  • Java后端之俯瞰数据接收的三种方式

    Java后端之俯瞰数据接收的三种方式

    在前后端分离的开发项目中,前后端联调的时候会出现这样那样的问题,尤其是在调取数据的程序上面,有时候前端给的前端给到后端的明明是正确的但就是无法拿到正确的数据,下面小千就来给大家详解一下常见的三种数据传输方式
    2021-10-10
  • MyBatis特殊SQL的执行实例代码

    MyBatis特殊SQL的执行实例代码

    这篇文章主要给大家介绍了关于MyBatis特殊SQL执行的相关资料,文中通过实例代码和图文介绍的非常详细,对大家学习或者使用MyBatis具有一定的参考学习价值,需要的朋友可以参考下
    2023-01-01
  • 详解Java中自定义注解的使用

    详解Java中自定义注解的使用

    Annontation是Java5开始引入的新特征,中文名称叫注解,它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。本文主要介绍了自定义注解的使用,希望对大家有所帮助
    2023-03-03
  • Java中线程安全有哪些实现思路

    Java中线程安全有哪些实现思路

    在 Java 多线程编程中,线程安全是一个非常重要的概念,本文主要介绍了Java中线程安全有哪些实现思路,非常具有实用价值,需要的朋友可以参考下
    2023-05-05
  • Java的RocketMQ之消息存储和查询原理详解

    Java的RocketMQ之消息存储和查询原理详解

    这篇文章主要介绍了Java的RocketMQ之消息存储和查询原理详解,一台Broker服务器只有一个CommitLog文件(组),RocketMQ会将所有主题的消息存储在同一个文件中,这个文件中就存储着一条条Message,每条Message都会按照顺序写入,需要的朋友可以参考下
    2024-01-01
  • Java中的@SneakyThrows注解详解

    Java中的@SneakyThrows注解详解

    这篇文章主要介绍了Java中的@SneakyThrows注解详解,@SneakyThrows将当前方法抛出的异常,包装成RuntimeException,骗过编译器,使得调用点可以不用显示处理异常信息,需要的朋友可以参考下
    2023-10-10
  • Spring Boot配置拦截器及实现跨域访问的方法

    Spring Boot配置拦截器及实现跨域访问的方法

    这篇文章主要介绍了Spring Boot配置拦截器及实现跨域访问的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-12-12
  • 详解如何为SpringBoot Web应用的日志方便追踪

    详解如何为SpringBoot Web应用的日志方便追踪

    在Web应用程序领域,有效的请求监控和可追溯性对于维护系统完整性和诊断问题至关重要,SpringBoot是一种用于构建Java应用程序的流行框架,在本文中,我们探讨了在SpringBoot中向日志添加唯一ID的重要性,需要的朋友可以参考下
    2023-11-11
  • 总结Java调用Python程序方法

    总结Java调用Python程序方法

    这篇文章主要介绍了总结Java调用Python程序方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08

最新评论