关于Python中Inf与Nan的判断问题详解

 更新时间:2017年02月08日 08:36:54   作者:Huoty  
这篇文章主要介绍了关于Python中Inf与Nan的判断问题,文中介绍的很详细,对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。

大家都知道 在Python 中可以用如下方式表示正负无穷:

float("inf") # 正无穷
float("-inf") # 负无穷

利用 inf(infinite) 乘以 0 会得到 not-a-number(NaN) 。如果一个数超出 infinite,那就是一个 NaN(not a number)数。在 NaN 数中,它的 exponent 部分为可表达的最大值,即 FF(单精度)、7FF(双精度)和 7FFF(扩展双精度)。 NaN 数与 infinite 数的区别是:infinite 数的 significand 部分为 0 值(扩展双精度的 bit63 位为 1);而 NaN 数的 significand 部分不为 0 值。

我们先看看如下的代码:

>>> inf = float("inf")
>>> ninf = float("-inf")
>>> nan = float("nan")
>>> inf is inf
True
>>> ninf is ninf
True
>>> nan is nan
True
>>> inf == inf
True
>>> ninf == ninf
True
>>> nan == nan
False
>>> inf is float("inf")
False
>>> ninf is float("-inf")
False
>>> nan is float("nan")
False
>>> inf == float("inf")
True
>>> ninf == float("-inf")
True
>>> nan == float("nan")
False

如果你没有尝试过在 Python 中判断一个浮点数是否为 NaN,对以上的输出结果肯定会感到诧异。首先,对于正负无穷和 NaN 自身与自身用 is 操作,结果都是 True,这里好像没有什么问题;但是如果用 == 操作,结果却不一样了, NaN 这时变成了 False。如果分别用 float 重新定义一个变量来与它们再用 is 和 == 比较,结果仍然出人意料。出现这种情况的原因稍稍有些复杂,这里就不赘术了,感兴趣可以查阅相关资料。

如果你希望正确的判断 Inf 和 Nan 值,那么你应该使用 math 模块的 math.isinf math.isnan 函数:

>>> import math
>>> math.isinf(inf)
True
>>> math.isinf(ninf)
True
>>> math.isnan(nan)
True
>>> math.isinf(float("inf"))
True
>>> math.isinf(float("-inf"))
True
>>> math.isnan(float("nan"))
True

这样便准确无误了。既然我在谈论这个问题,就是再忠告:不要在 Python 中试图用 is 和 == 来判断一个对象是否是正负无穷或者 NaN。你就乖乖的用 math 模块吧,否则就是引火烧身。

当然也有别的方法来作判断,以下用 NaN 来举例,但仍然推荐用 math 模块,免得把自己弄糊涂。

用对象自身判断自己

>>> def isnan(num):
...  return num != num
... 
>>> isnan(float("nan"))
True

用 numpy 模块的函数

>>> import numpy as np
>>> 
>>> np.isnan(np.nan)
True
>>> np.isnan(float("nan"))
True
>>> np.isnan(float("inf"))
False

Numpy 的 isnan 函数还可以对整个 list 进行判断:

>>> lst = [1, float("nan"), 2, 3, np.nan, float("-inf"), 4, np.nan]
>>> lst
[1, nan, 2, 3, nan, -inf, 4, nan]
>>> np.isnan(lst)
array([False, True, False, False, True, False, False, True], dtype=bool)

这里的 np.isnan 返回布尔值数组,如果对应位置为 NaN,返回 True,否则返回 False。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

相关文章

  • Python如何新建三维数组并赋值

    Python如何新建三维数组并赋值

    本文详细介绍了如何使用Python和numpy库建立三维数组并对其进行赋值。首先,通过numpy创建一个3x3x3的三维数组,其次,将自定义的二维数组赋值到三维数组中。本文还解释了相关参数的含义,使读者能够更好地理解和应用到其他多维矩阵的操作中
    2024-09-09
  • pytest生成简单自定义测试结果的html报告

    pytest生成简单自定义测试结果的html报告

    这篇文章主要为大家介绍了pytest生成简单自定义测试结果html报告,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • python中读取txt文件时split()函数的妙用

    python中读取txt文件时split()函数的妙用

    这篇文章主要介绍了python中读取txt文件时split()函数的妙用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • Tensorflow之构建自己的图片数据集TFrecords的方法

    Tensorflow之构建自己的图片数据集TFrecords的方法

    本篇文章主要介绍了Tensorflow之构建自己的图片数据集TFrecords的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • Python图算法实例分析

    Python图算法实例分析

    这篇文章主要介绍了Python图算法,结合实例形式详细分析了Python数据结构与算法中的图算法实现技巧,需要的朋友可以参考下
    2016-08-08
  • 基于python实现Pycharm断点调试

    基于python实现Pycharm断点调试

    这篇文章主要介绍了基于python实现Pycharm断点调试,在我们写程序的时候,很容易遇到各种各样的bug,然后编译器提示程序出错的地方。很多时候可以通过提示的信息修改程序,但是有时我们想得到更多的信息,这个时候就需要进行断点调试,下面我们就一起来学习ycharm断点调试
    2022-02-02
  • numpy.unique()使用方法

    numpy.unique()使用方法

    本文主要介绍了numpy.unique()使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python小红书旋转验证码识别实战教程

    Python小红书旋转验证码识别实战教程

    这篇文章主要介绍了Python小红书旋转验证码识别实战教程,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2023-08-08
  • 还不知道Anaconda是什么?读这一篇文章就够了

    还不知道Anaconda是什么?读这一篇文章就够了

    Anaconda指的是一个开源的Python发行版本,其包含了Conda、Python等180多个科学包及其依赖项,下面这篇文章主要给大家介绍了关于Anaconda是什么的相关资料,需要的朋友可以参考下
    2023-02-02
  • python日志模块logging案例详解

    python日志模块logging案例详解

    日志模块主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等,这篇文章主要介绍了python日志模块logging,需要的朋友可以参考下
    2024-01-01

最新评论