Python yield 使用方法浅析

 更新时间:2017年05月20日 15:21:06   作者:preterhuman_peak  
本篇文章主要介绍了Python yield 使用方法浅析,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

 def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    print b 
    a, b = b, a + b 
    n = n + 1

执行 fab(5),我们可以得到如下输出:

 >>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

 def fab(max): 
  n, a, b = 0, 0, 1 
  L = [] 
  while n < max: 
    L.append(b) 
    a, b = b, a + b 
    n = n + 1 
  return L

可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

 for i in range(1000): pass会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 

  def __init__(self, max): 
    self.max = max 
    self.n, self.a, self.b = 0, 0, 1 

  def __iter__(self): 
    return self 

  def next(self): 
    if self.n < self.max: 
      r = self.b 
      self.a, self.b = self.b, self.a + self.b 
      self.n = self.n + 1 
      return r 
    raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

 def fab(max): 
  n, a, b = 0, 0, 1 
  while n < max: 
    yield b 
    # print b 
    a, b = b, a + b 
    n = n + 1 

'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

 >>> f = fab(5) 
 >>> f.next() 
 1 
 >>> f.next() 
 1 
 >>> f.next() 
 2 
 >>> f.next() 
 3 
 >>> f.next() 
 5 
 >>> f.next() 
 Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
 StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

 >>> from inspect import isgeneratorfunction 
 >>> isgeneratorfunction(fab) 
 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

 >>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True
fab 是无法迭代的,而 fab(5) 是可迭代的:
 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 
 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
 

>>> f1 = fab(3) 
 >>> f2 = fab(5) 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 2 
 >>> print 'f2:', f2.next() 
 f2: 2 
 >>> print 'f2:', f2.next() 
 f2: 3 
 >>> print 'f2:', f2.next() 
 f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

 def read_file(fpath): 
  BLOCK_SIZE = 1024 
  with open(fpath, 'rb') as f: 
    while True: 
      block = f.read(BLOCK_SIZE) 
      if block: 
        yield block 
      else: 
        return

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python实现简单登陆系统

    python实现简单登陆系统

    这篇文章主要为大家详细介绍了python实现简单登陆系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-10-10
  • Python中日志模块logging的使用技巧和应用详解

    Python中日志模块logging的使用技巧和应用详解

    在Python开发中,日志记录是一个非常重要的环节,它不仅有助于开发者追踪程序的执行流程,还能在出现问题时提供关键信息,帮助快速定位并解决问题,本文将结合实际案例,详细介绍logging模块的基础用法和高级特性,需要的朋友可以参考下
    2024-08-08
  • 你们要的Python绘画3D太阳系详细代码

    你们要的Python绘画3D太阳系详细代码

    这篇文章主要给大家介绍了关于如何利用Python 绘画3D太阳系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-10-10
  • Python爬虫爬取、解析数据操作示例

    Python爬虫爬取、解析数据操作示例

    这篇文章主要介绍了Python爬虫爬取、解析数据操作,结合实例形式分析了Python爬虫爬取、解析、存储数据相关操作技巧与注意事项,需要的朋友可以参考下
    2020-03-03
  • Python列表推导式详解

    Python列表推导式详解

    列表推导式是Python构建列表(list)的一种快捷方式,可以使用简洁的代码就创建出一个列表.本文通过代码示例详细介绍了python列表推导式,感兴趣的同学可以参考阅读
    2023-04-04
  • 浅析Python字符串中的r和u的区别

    浅析Python字符串中的r和u的区别

    在Python中,字符串前面我们经常看到会加一些前缀,例如u、r、b、f。这篇文章将带大家简单了解一下字符串前加r(R)或u/(U)的前缀的区别,快来跟随小编一起学习吧
    2021-12-12
  • Python流程控制语句详解

    Python流程控制语句详解

    所有编程语言在编写时都要遵守语音结构和流程控制,他们控制了整个程序的运行步骤。流程控制包括顺序控制、条件控制和循环控制
    2022-07-07
  • Python中清空list的四种方法

    Python中清空list的四种方法

    本文介绍了Python中清空列表的四种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2025-01-01
  • Python进阶-函数默认参数(详解)

    Python进阶-函数默认参数(详解)

    下面小编就为大家带来一篇Python进阶-函数默认参数(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • 对python自动生成接口测试的示例讲解

    对python自动生成接口测试的示例讲解

    今天小编就为大家分享一篇对python自动生成接口测试的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11

最新评论