Python实现数据库并行读取和写入实例

 更新时间:2017年06月09日 11:12:41   作者:AsuraDong  
本篇文章主要介绍了Python实现数据库并行读取和写入实例,非常具有实用价值,需要的朋友可以参考下

这篇主要记录一下如何实现对数据库的并行运算来节省代码运行时间。语言是Python,其他语言思路一样。

前言

一共23w条数据,是之前通过自然语言分析处理过的数据,附一张截图:


要实现对news主体的读取,并且找到其中含有的股票名称,只要发现,就将这支股票和对应的日期、score写入数据库。

显然,几十万条数据要是一条条读写,然后在本机上操作,耗时太久,可行性极低。所以,如何有效并行的读取内容,并且进行操作,最后再写入数据库呢?

并行读取和写入

并行读取:创建N*max_process个进程,对数据库进行读取。读取的时候应该注意:

  1. 每个进程需要分配不同的connection和对应的cursor,否则数据库会报错。
  2. 数据库必须能承受相应的高并发访问(可以手动更改)

实现的时候,如果不在进程里面创建新的connection,就会发生冲突,每个进程拿到权限后,会被下个进程释放,所以汇报出来NoneType Error的错误。

  1. 并行写入:在对数据库进行更改的时候,不可以多进程更改。所以,我们需要根据已有的表,创建max_process-1个同样结构的表用来写入。表的命名规则可以直接在原来基础上加上1,2,3...数字可以通过对max_process取余得到。

此时,对应进程里面先后出现读入的conn(保存消息后关闭)和写入的conn。每个进程对应的表的index就是 主循环中的num对max_process取余(100->4,101->5),这样每个进程只对一个表进行操作了。

部分代码实现

max_process = 16 #最大进程数

def read_SQL_write(r_host,r_port,r_user,r_passwd,r_db,r_charset,w_host,w_port,w_user,w_passwd,w_db,w_charset,cmd,index=None):
  #得到tem字典保存着信息
  try:
    conn = pymysql.Connect(host=r_host, port=r_port, user=r_user, passwd =r_passwd, db =r_db, charset =r_charset)
    cursor = conn.cursor()
    cursor.execute(cmd)
  except Exception as e:
    error = "[-][-]%d fail to connect SQL for reading" % index
    log_error('error.log',error)
    return 
  else:
    tem = cursor.fetchone()
    print('[+][+]%d succeed to connect SQL for reading' % index)
  finally:
    cursor.close()
    conn.close()
  
  try:
    conn = pymysql.Connect(host=w_host, port=w_port, user=w_user, passwd =w_passwd, db =w_db, charset =w_charset)
    cursor = conn.cursor()
    cursor.execute(cmd)
  except Exception as e:
    error = "[-][-]%d fail to connect SQL for writing" % index
    log_error('error.log',error)
    return 
  else:
    print('[+][+]%d succeed to connect SQL for writing' % index)
  
  
  r_dict = dict()
  r_dict['id'] = tem[0]
  r_dict['content_id'] = tem[1]
  r_dict['pub_date'] = tem[2]
  r_dict['title'] = cht_to_chs(tem[3])
  r_dict['title_score'] =tem[4]![](http://images2015.cnblogs.com/blog/1172464/201706/1172464-20170609000900309-1810357590.png)

  r_dict['news_content'] = cht_to_chs(tem[5])
  r_dict['content_score'] = tem[6]
  
  for key in stock_dict.keys():
    #能找到对应的股票
    if stock_dict[key][1] and ( r_dict['title'].find(stock_dict[key][1])!=-1 or r_dict['news_content'].find(stock_dict[key][1])!=-1 ):
      w_dict=dict()
      w_dict['code'] = key
      w_dict['english_name'] = stock_dict[key][0]
      w_dict['cn_name'] = stock_dict[key][1]
      #得到分数
      if r_dict['title_score']:
        w_dict['score']=r_dict['title_score']
      else:
        w_dict['score']=r_dict['content_score']
      
      #开始写入
      try:
        global max_process
        cmd = "INSERT INTO dyx_stock_score%d VALUES ('%s', '%s' , %d , '%s' , '%s' , %.2f );" % \
          (index%max_process ,r_dict['content_id'] ,r_dict['pub_date'] ,w_dict['code'] ,w_dict['english_name'] ,w_dict['cn_name'] ,w_dict['score'])
        cursor.execute(cmd)
        conn.commit()
      except Exception as e:
        error = "  [-]%d fail to write to SQL" % index
        cursor.rollback()
        log_error('error.log',error)
      else:
        print("  [+]%d succeed to write to SQL" % index)

  cursor.close()
  conn.close()
def main():
  num = 238143#数据库查询拿到的总数
  p = None
  for index in range(1,num+1):
    if index%max_process==1:
      if p:
        p.close()
        p.join()
      p = multiprocessing.Pool(max_process)
    r_cmd = ('select id,content_id,pub_date,title,title_score,news_content,content_score from dyx_emotion_analysis where id = %d;' % (index))
    p.apply_async(func = read_SQL_write,args=(r_host,r_port,r_user,r_passwd,r_db,r_charset,w_host,w_port,w_user,w_passwd,w_db,w_charset,r_cmd,index,))

  if p:
    p.close()
    p.join()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 安装python依赖包psycopg2来调用postgresql的操作

    安装python依赖包psycopg2来调用postgresql的操作

    这篇文章主要介绍了安装python依赖包psycopg2来调用postgresql的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-01-01
  • pytest配置文件pytest.ini的详细使用

    pytest配置文件pytest.ini的详细使用

    这篇文章主要介绍了pytest配置文件pytest.ini的详细使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python利用openpyxl类实现在Excel中绘制乐高图案

    Python利用openpyxl类实现在Excel中绘制乐高图案

    在商场看到一个超级玛丽的乐高图,感觉使用excel的颜色填充也能画出来。所以本文将借助openpyxl类实现在Excel中绘制乐高图案,需要的可以参考一下
    2022-12-12
  • Python3和pyqt5实现控件数据动态显示方式

    Python3和pyqt5实现控件数据动态显示方式

    今天小编就为大家分享一篇Python3和pyqt5实现控件数据动态显示方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 详解Python Opencv和PIL读取图像文件的差别

    详解Python Opencv和PIL读取图像文件的差别

    这篇文章主要介绍了详解Python Opencv和PIL读取图像文件的差别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • Python实现的对一个数进行因式分解操作示例

    Python实现的对一个数进行因式分解操作示例

    这篇文章主要介绍了Python实现的对一个数进行因式分解操作,结合实例形式分析了Python因式分解数值运算相关操作技巧,需要的朋友可以参考下
    2019-06-06
  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    这篇文章主要介绍了Python数据结构与算法之图的最短路径(Dijkstra算法),结合完整实例形式分析了Python图的最短路径算法相关原理与实现技巧,需要的朋友可以参考下
    2017-12-12
  • python图像处理入门(一)

    python图像处理入门(一)

    这篇文章主要介绍了python图像处理入门,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • python中的代码编码格式转换问题

    python中的代码编码格式转换问题

    本文给大家讲解的是使用Python实现代码编码格式转换的问题,十分的简单实用,有需要的小伙伴可以参考下。
    2015-06-06
  • python实现在sqlite动态创建表的方法

    python实现在sqlite动态创建表的方法

    这篇文章主要介绍了python实现在sqlite动态创建表的方法,涉及Python操作SQLite数据库创建数据表的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-05-05

最新评论