Python 中pandas.read_excel详细介绍

 更新时间:2017年06月23日 11:03:25   投稿:lqh  
这篇文章主要介绍了Python 中pandas.read_excel详细介绍的相关资料,需要的朋友可以参考下

Python 中pandas.read_excel详细介绍

#coding:utf-8
import pandas as pd
import numpy as np

filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls"
#filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3a-ea03-46b9-8033-73615ed07816.xls"
df = pd.read_excel(filefullpath,skiprows=[0])
#df = pd.read_excel(filefullpath, sheetname=[0,2],skiprows=[0])
#sheetname指定为读取几个sheet,sheet数目从0开始
#如果sheetname=[0,2],那代表读取第0页和第2页的sheet
#skiprows=[0]代表读取跳过的行数第0行,不写代表不跳过标题
#df = pd.read_excel(filefullpath, sheetname=None ,skiprows=[0])

print df
print type(df)
#若果有多页,type(df)就为<type 'dict'>
#如果就一页,type(df)就为<class 'pandas.core.frame.DataFrame'>
#{0:dataframe,1:dataframe,2:dataframe}

pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0,
 index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None,
 na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None,
 engine=None, squeeze=False, **kwds)

Read an Excel table into a pandas DataFrame

参数解析:

io : string, path object (pathlib.Path or py._path.local.LocalPath),

  file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

sheetname : string, int, mixed list of strings/ints, or None, default 0

  Strings are used for sheet names, Integers are used in zero-indexed sheet positions.

  Lists of strings/integers are used to request multiple sheets.

  Specify None to get all sheets.

  str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets.

  Available Cases

    Defaults to 0 -> 1st sheet as a DataFrame
    1 -> 2nd sheet as a DataFrame
    “Sheet1” -> 1st sheet as a DataFrame
    [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
    None -> All sheets as a dictionary of DataFrames

header : int, list of ints, default 0

  Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex

skiprows : list-like

  Rows to skip at the beginning (0-indexed)

skip_footer : int, default 0

  Rows at the end to skip (0-indexed)

index_col : int, list of ints, default None

  Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex

names : array-like, default None

  List of column names to use. If file contains no header row, then you should explicitly pass header=None

converters : dict, default None

  Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.

parse_cols : int or list, default None

    If None then parse all columns,
    If int then indicates last column to be parsed
    If list of ints then indicates list of column numbers to be parsed
    If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

squeeze : boolean, default False

  If the parsed data only contains one column then return a Series

na_values : list-like, default None

  List of additional strings to recognize as NA/NaN

thousands : str, default None

  Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

keep_default_na : bool, default True

  If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to

verbose : boolean, default False

  Indicate number of NA values placed in non-numeric columns

engine: string, default None

  If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float : boolean, default True

  convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names : boolean, default None

  DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True.

return返回的结果

parsed : DataFrame or Dict of DataFrames

  DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned.

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

  • Python3 socket同步通信简单示例

    Python3 socket同步通信简单示例

    这篇文章主要介绍了Python3 socket同步通信功能,结合简单实例形式分析了Python socket同步通信客户端与服务器端实现技巧,需要的朋友可以参考下
    2017-06-06
  • Pycharm中使用git进行合作开发的教程详解

    Pycharm中使用git进行合作开发的教程详解

    这篇文章主要介绍了Pycharm中使用git进行合作开发,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • Python基础之文件读取的讲解

    Python基础之文件读取的讲解

    今天小编就为大家分享一篇关于Python基础之文件读取的讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-02-02
  • Django中ORM找出内容不为空的数据实例

    Django中ORM找出内容不为空的数据实例

    这篇文章主要介绍了Django中ORM找出内容不为空的数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Pytorch中index_select() 函数的实现理解

    Pytorch中index_select() 函数的实现理解

    这篇文章主要介绍了Pytorch中index_select() 函数的实现理解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • 基于pygame实现童年掌机打砖块游戏

    基于pygame实现童年掌机打砖块游戏

    这篇文章主要为大家详细介绍了基于pygame实现童年掌机打砖块游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-02-02
  • Python实现获取照片的地理定位信息

    Python实现获取照片的地理定位信息

    这篇文章主要为大家详细介绍了如何使用 Python 的 PIL(Python Imaging Library)库实现从 JPEG 图像中获取经纬度信息,需要的可以参考一下
    2023-05-05
  • Pandas数据连接pd.concat的实现

    Pandas数据连接pd.concat的实现

    本文主要介绍了Pandas数据连接pd.concat的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-07-07
  • 详解python Todo清单实战

    详解python Todo清单实战

    这篇文章主要介绍了详解python Todo清单实战,需要实现的功能有添加任务、删除任务、编辑任务,操作要关联数据库,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • python3编码问题汇总

    python3编码问题汇总

    本文给通过一个具体的编码问题的解决办法,给大家详细分享了python中的编码问题的来龙去脉,非常的细致全面,有需要的小伙伴可以参考下
    2016-09-09

最新评论