Python如何快速实现分布式任务

 更新时间:2017年07月06日 09:41:42   作者:开源小站  
这篇文章主要介绍了Python如何快速实现分布式任务,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

深入读了读python的官方文档,发觉Python自带的multiprocessing模块有很多预制的接口可以方便的实现多个主机之间的通讯,进而实现典型的生产者-消费者模式的分布式任务架构。

之前,为了在Python中实现生产者-消费者模式,往往就会选择一个额外的队列系统,比如rabbitMQ之类。此外,你有可能还要设计一套任务对象的序列化方式以便塞入队列。如果没有队列的支持,那不排除有些同学不得不从socket服务器做起,直接跟TCP/IP打起交道来。

其实multiprocessing.managers中有个BaseManager就为开发者提供了这样一个快速接口。

我们假定的场景是1个生产者(producer.py)+8个消费者(worker.py)的系统,还有一个中央节点负责协调(server.py)实现如下:

server.py

from multiprocessing.managers import BaseManager
import Queue

queue = Queue.Queue() #初始化一个Q,用于消息传递
class QueueManager(BaseManager):
  pass

QueueManager.register('get_queue', callable=lambda:queue) # 在系统中发布get_queue这个业务

if __name__ == '__main__':
  m = QueueManager(address=('10.239.85.193', 50000),authkey='abr' )
 # 监听所有10.239.85.193的50000口
  s = m.get_server()
  s.serve_forever()

worker.py

from multiprocessing.managers import BaseManager
from multiprocessing import Pool


class QueueManager(BaseManager):
 pass

QueueManager.register('get_queue') 

def feb(i): #经典的'山羊增殖'
  if i < 2: return 1
  if i < 5 : return feb(i-1) + feb(i-2)
  return feb(i-1) + feb(i-2) - feb(i-5)

def worker(i): 
  m = QueueManager(address=('10.239.85.193', 50000), authkey='abr')
#连接server
  m.connect()
  while True:
    queue = m.get_queue()
# 获取Q
   c = queue.get()
 print feb(c)

if __name__ == '__main__':

  p = Pool(8) # 分进程启动8个worker
  p.map(worker, range(8))
producer.py

from multiprocessing.managers import BaseManager


class QueueManager(BaseManager):
  pass
QueueManager.register('get_queue')


if __name__ == '__main__':
 m = QueueManager(address=('10.239.85.193', 50000), authkey='abr')
 m.connect()
 i = 0
 while True:
   queue = m.get_queue()
   queue.put(48)

   i+=1

系统会直接将Queue() 对象中的数据直接封装后通过TCP 50000端口在主机之间传递。不过需要注意的是,由于authkey的缘故,各个节点要求python的版本一致。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 浅谈Python访问MySQL的正确姿势

    浅谈Python访问MySQL的正确姿势

    这篇文章主要介绍了浅谈Python访问MySQL的正确姿势,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • Python实现鸡群算法的示例代码

    Python实现鸡群算法的示例代码

    鸡群算法,缩写为CSO(Chicken Swarm Optimization),尽管具备所谓仿生学的背景,但实质上是粒子群算法的一个变体。本文将利用Python语言实现这一算法,感兴趣的可以了解一下
    2022-11-11
  • Python如何实现单因素方差分析

    Python如何实现单因素方差分析

    这篇文章主要介绍了Python如何实现单因素方差分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07
  • Jupyter Notebook添加代码自动补全功能的实现

    Jupyter Notebook添加代码自动补全功能的实现

    这篇文章主要介绍了Jupyter Notebook添加代码自动补全功能的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • 在PyCharm中安装PaddlePaddle的方法

    在PyCharm中安装PaddlePaddle的方法

    这篇文章主要介绍了在PyCharm中安装PaddlePaddle的方法,本文给大家介绍的非常想详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • 教你pycharm快速添加远程环境的详细过程

    教你pycharm快速添加远程环境的详细过程

    今天通过本文给大家分享pycharm快速添加远程环境的过程,通过在setting中选择设置符号add,具体详细过程跟随小编一起通过本文学习下吧
    2021-07-07
  • 关于Python Tkinter Button控件command传参问题的解决方式

    关于Python Tkinter Button控件command传参问题的解决方式

    这篇文章主要介绍了关于Python Tkinter Button控件command传参问题的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Python PyPDF2模块安装使用解析

    Python PyPDF2模块安装使用解析

    这篇文章主要介绍了Python PyPDF2模块安装使用解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • python中以函数作为参数(回调函数)的实现方法

    python中以函数作为参数(回调函数)的实现方法

    这篇文章主要介绍了python中以函数作为参数(回调函数)的实现方法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 一篇文章带你入门python之推导式

    一篇文章带你入门python之推导式

    这篇文章主要为大家详细介绍了python的推导式,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02

最新评论