Python实现曲线点抽稀算法的示例

 更新时间:2017年10月12日 09:03:52   作者:spiderpy  
本篇文章主要介绍了Python实现曲线点抽稀算法的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下:

目录

  • 何为抽稀
  • 道格拉斯-普克(Douglas-Peuker)算法
  • 垂距限值法
  • 最后

正文

何为抽稀

在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便。多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准。因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀。

通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折线,并且能够在一定程度保持原有形状。比较常用的两种抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)过程如下:

1、连接曲线首尾两点A、B;
2、依次计算曲线上所有点到A、B两点所在曲线的距离;
3、计算最大距离D,如果D小于阈值threshold,则去掉曲线上出A、B外的所有点;如果D大于阈值threshold,则把曲线以最大距离分割成两段;
4、对所有曲线分段重复1-3步骤,知道所有D均小于阈值。即完成抽稀。
这种算法的抽稀精度与阈值有很大关系,阈值越大,简化程度越大,点减少的越多;反之简化程度越低,点保留的越多,形状也越趋于原曲线。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  DouglasPeuker Description : 道格拉斯-普克抽稀算法 Author :    J_hao date:     2017/8/16------------------------------------------------- Change Activity:         2017/8/16: 道格拉斯-普克抽稀算法-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值


def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance


class DouglasPeuker(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()
    self.disqualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    if len(point_list) < 3:
      self.qualify_list.extend(point_list[::-1])
    else:
      # 找到与收尾两点连线距离最大的点
      max_distance_index, max_distance = 0, 0
      for index, point in enumerate(point_list):
        if index in [0, len(point_list) - 1]:
          continue
        distance = point2LineDistance(point, point_list[0], point_list[-1])
        if distance > max_distance:
          max_distance_index = index
          max_distance = distance

      # 若最大距离小于阈值,则去掉所有中间点。 反之,则将曲线按最大距离点分割
      if max_distance < self.threshold:
        self.qualify_list.append(point_list[-1])
        self.qualify_list.append(point_list[0])
      else:
        # 将曲线按最大距离的点分割成两段
        sequence_a = point_list[:max_distance_index]
        sequence_b = point_list[max_distance_index:]

        for sequence in [sequence_a, sequence_b]:
          if len(sequence) < 3 and sequence == sequence_b:
            self.qualify_list.extend(sequence[::-1])
          else:
            self.disqualify_list.append(sequence)

  def main(self, point_list):
    self.diluting(point_list)
    while len(self.disqualify_list) > 0:
      self.diluting(self.disqualify_list.pop())
    print self.qualify_list
    print len(self.qualify_list)


if __name__ == '__main__':
  d = DouglasPeuker()
  d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其实和DP算法原理一样,但是垂距限值不是从整体角度考虑,而是依次扫描每一个点,检查是否符合要求。

算法过程如下:

1、以第二个点开始,计算第二个点到前一个点和后一个点所在直线的距离d;
2、如果d大于阈值,则保留第二个点,计算第三个点到第二个点和第四个点所在直线的距离d;若d小于阈值则舍弃第二个点,计算第三个点到第一个点和第四个点所在直线的距离d;
3、依次类推,直线曲线上倒数第二个点。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  LimitVerticalDistance Description : 垂距限值抽稀算法 Author :    J_hao date:     2017/8/17------------------------------------------------- Change Activity:         2017/8/17:-------------------------------------------------"""
from __future__ import division

from math import sqrt, pow

__author__ = 'J_hao'

THRESHOLD = 0.0001 # 阈值


def point2LineDistance(point_a, point_b, point_c):
  """  计算点a到点b c所在直线的距离  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先计算b c 所在直线的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]

  # 计算点a到b c所在直线的距离
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance


class LimitVerticalDistance(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()

  def diluting(self, point_list):
    """    抽稀    :param point_list:二维点列表    :return:    """
    self.qualify_list.append(point_list[0])
    check_index = 1
    while check_index < len(point_list) - 1:
      distance = point2LineDistance(point_list[check_index],
                     self.qualify_list[-1],
                     point_list[check_index + 1])

      if distance < self.threshold:
        check_index += 1
      else:
        self.qualify_list.append(point_list[check_index])
        check_index += 1
    return self.qualify_list


if __name__ == '__main__':
  l = LimitVerticalDistance()
  diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])
  print len(diluting)
  print(diluting)

最后

其实DP算法和垂距限值法原理一样,DP算法是从整体上考虑一条完整的曲线,实现时较垂距限值法复杂,但垂距限值法可能会在某些情况下导致局部最优。另外在实际使用中发现采用点到另外两点所在直线距离的方法来判断偏离,在曲线弧度比较大的情况下比较准确。如果在曲线弧度比较小,弯��程度不明显时,这种方法抽稀效果不是很理想,建议使用三点所围成的三角形面积作为判断标准。下面是抽稀效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Django 按组控制权限类及定义方法详解

    Django 按组控制权限类及定义方法详解

    这篇文章主要为大家介绍了Django 按组控制权限类及定义方法详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • Python利用docx模块实现快速操作word文件

    Python利用docx模块实现快速操作word文件

    这篇文章主要为大家详细介绍了Python如何利用docx模块实现快速操作word文件,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2022-09-09
  • Python字典和集合讲解

    Python字典和集合讲解

    这篇文章主要给大家假关节的是Python字典和集合,字典是Python内置的数据结构之一,是一个无序的序列;而集合是python语言提供的内置数据结构,没有value的字典,集合类型与其他类型最大的区别在于,它不包含重复元素。想具体了解有关python字典与集合,请看下面文章内容
    2021-10-10
  • 详解JavaScript编程中的window与window.screen对象

    详解JavaScript编程中的window与window.screen对象

    这篇文章主要介绍了JavaScript编程中的window与window.screen对象,是JS在浏览器中视图编程的基础,需要的朋友可以参考下
    2015-10-10
  • 7个关于Python的经典基础案例

    7个关于Python的经典基础案例

    这篇文章主要给大家分享 7个关于Python的经典基础案例,列表排序、调换字典键值、删除列表中的重复元素、输出质数、判断是一年中第几天、猜数字、进制转换;,需要的朋友可以参考一下
    2021-11-11
  • python makedirs() 递归创建目录

    python makedirs() 递归创建目录

    os.makedirs()函数用于在Python中递归地创建目录,支持设置权限和处理目录已存在的情况,下面就来具体介绍一下,感兴趣的可以了解一下
    2024-12-12
  • python shutil文件操作工具使用实例分析

    python shutil文件操作工具使用实例分析

    这篇文章主要介绍了python shutil文件操作工具使用实例分析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • 轻松掌握python的dataclass让你的代码更简洁优雅

    轻松掌握python的dataclass让你的代码更简洁优雅

    本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默认值、隐藏敏感信息、设置只读对象以及将其转化为元组和字典,通过使用dataclass,我们可以更高效地进行数据分析和处理,感兴趣的朋友跟随小编一起看看吧
    2025-01-01
  • Python深入学习之闭包

    Python深入学习之闭包

    这篇文章主要介绍了Python深入学习之闭包,闭包(closure)是函数式编程的重要的语法结构,Python也支持这一特性,本文就这一特性做了讲解,需要的朋友可以参考下
    2014-08-08
  • python使用cartopy库绘制台风路径代码

    python使用cartopy库绘制台风路径代码

    大家好,本篇文章主要讲的是python使用cartopy库绘制台风路径代码,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02

最新评论