R语言 vs Python对比:数据分析哪家强?

 更新时间:2017年11月17日 15:35:29   投稿:daisy  
R语言和Python在数据分析方法都各有所长,两者现在可以说是都非常热门的,那么这篇文章就来给大家总结介绍关于R语言和Python数据分析的相关资料,并给大家推荐了一些相关的书籍学习,需要的朋友可以参考借鉴,下面随着小编来一起看看吧。

什么是R语言?

R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的罗斯·伊哈卡和罗伯特·杰特曼开发(也因此称为R),现在由“R开发核心团队”负责开发。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。

R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。R主要是以命令行操作,同时有人开发了几种图形用户界面。

R的功能能够通过由用户撰写的包增强。增加的功能有特殊的统计技术、绘图功能,以及编程接口和数据输出/输入功能。这些软件包是由R语言、LaTeX、Java及最常用C语言和Fortran撰写。下载的可执行文件版本会连同一批核心功能的软件包,而根据CRAN纪录有过千种不同的软件包。其中有几款较为常用,例如用于经济计量、财经分析、人文科学研究以及人工智能。

Python与R语言的共同特点

Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法

Python和R两门语言有多平台适应性,linux、window都可以使用,并且代码可移植性强

Python和R比较贴近MATLAB以及minitab等常用的数学工具

Python与R语言的区别

数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。

Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。

Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。 而R是在统计方面比较突出。

Python的pandas借鉴了R的dataframes,R中的rvest则参考了Python的BeautifulSoup,两种语言在一定程度上存在互补性,通常,我们认为Python比R在计算机编程、网络爬虫上更有优势,而 R 在统计分析上是一种更高效的独立数据分析工具。所以说,同时学会Python和R这两把刷子才是数据科学的王道。

要赶上这趟快车不容易,尤其是对于非专业出身的小白来说,面对一堆代码就已经万脸懵逼了,还怎么可能成为Python大牛?

今天就为您精心推荐几本R语言与python入门及数据分析的书籍,只要开始,就不怕晚!

开始之前,为想学习python的朋友推荐下之前的两期书单,反响不错,需要的朋友可以看一看:

一、R语言实战(第二版)

(点击链接,即可下载)

推荐理由:注重实用性,是一本全面而细致的R指南,高度概括了该软件和它的强大功能,展示了使用的统计示例,且对于难以用传统方法处理的凌乱、不完整和非正态的数据给出了优雅的处理方法。

二、Python编程:从入门到实践

(点击,直接下载)

推荐理由:上到有编程基础的程序员,下到10岁少年,想入门Python并达到可以开发实际项目的水平,本书是读者优选!

三、数据科学实战手册 R+Python

点击链接,即可下载

推荐理由:本书涵盖R和Python两种主流语言,其优点在于其结构,每一章的每一节内容都是按照“准备工作—处理流程—工作原理”的方式组织,这种组织形式非常适合一边实践一边学习(learn-by-doing)。

四、Python金融大数据分析

(点击链接,即可下载)

推荐理由:唯一一本详细讲解使用Python分析处理金融大数据的专业图书;金融应用开发领域从业人员必读。

五、Python数据科学指南

推荐理由:本书从讲解如何在数据科学中应用Python开始,陆续介绍了Python的工作环境,如何用Python分析数据,以及数据挖掘的概念,然后又扩展到机器学习。本书还涵盖了缩减原则、集成方法、随机森林、旋转森林和超树等方面的内容,这些都是一个成功的数据科学专家所必需掌握的。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

相关文章

  • python 实现两个变量值进行交换的n种操作

    python 实现两个变量值进行交换的n种操作

    这篇文章主要介绍了python 实现两个变量值进行交换的n种操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Python实现日期判断和加减操作详解

    Python实现日期判断和加减操作详解

    这篇文章主要介绍了如何利用Python实现日期的判断,以及对日期的加减操作,文中的示例代码对我们学习或工作有一定的价值,需要的可以参考一下
    2022-01-01
  • Django实现web端tailf日志文件功能及实例详解

    Django实现web端tailf日志文件功能及实例详解

    这篇文章主要介绍了Django实现web端tailf日志文件功能,本文通过实例给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-07-07
  • Django框架设置cookies与获取cookies操作详解

    Django框架设置cookies与获取cookies操作详解

    这篇文章主要介绍了Django框架设置cookies与获取cookies操作,结合实例形式详细分析了Django框架针对cookie操作的各种常见技巧与操作注意事项,需要的朋友可以参考下
    2019-05-05
  • Python ArgumentParse的subparser用法说明

    Python ArgumentParse的subparser用法说明

    这篇文章主要介绍了Python ArgumentParse的subparser用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python getpass实现密文实例详解

    python getpass实现密文实例详解

    这篇文章主要介绍了python getpass实现密文实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • Python运用于数据分析的简单教程

    Python运用于数据分析的简单教程

    这篇文章主要介绍了Python运用于数据分析的简单教程,主要介绍了如何运用Python来进行数据导入、变化、统计和假设检验等基本的数据分析,需要的朋友可以参考下
    2015-03-03
  • Django DRF路由与扩展功能的实现

    Django DRF路由与扩展功能的实现

    这篇文章主要介绍了Django DRF路由与扩展功能的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06
  • Scrapy的简单使用教程

    Scrapy的简单使用教程

    Scrapy,Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
    2017-10-10
  • python对离散变量的one-hot编码方法

    python对离散变量的one-hot编码方法

    今天小编就为大家分享一篇python对离散变量的one-hot编码方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07

最新评论