python使用TensorFlow进行图像处理的方法

 更新时间:2018年02月28日 10:21:23   作者:HackTheCode  
本篇文章主要介绍了使用TensorFlow进行图像处理的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

一、图片的放大缩小

在使用TensorFlow进行图片的放大缩小时,有三种方式:

1、tf.image.resize_nearest_neighbor():临界点插值
2、tf.image.resize_bilinear():双线性插值
3、tf.image.resize_bicubic():双立方插值算法

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow进行图片的放缩
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

h, w, depth = img.shape
img = np.expand_dims(img, 0)

# 临界点插值
nn_image = tf.image.resize_nearest_neighbor(img, size=[h+100, w+100])
nn_image = tf.squeeze(nn_image)
with tf.Session() as sess:
  # 运行 'init' op
  nn_image = sess.run(nn_image)
nn_image = np.uint8(nn_image)

# 双线性插值
bi_image = tf.image.resize_bilinear(img, size=[h+100, w+100])
bi_image = tf.squeeze(bi_image)
with tf.Session() as sess:
  # 运行 'init' op
  bi_image = sess.run(bi_image)
bi_image = np.uint8(bi_image)

# 双立方插值算法
bic_image = tf.image.resize_bicubic(img, size=[h+100, w+100])
bic_image = tf.squeeze(bic_image)
with tf.Session() as sess:
  # 运行 'init' op
  bic_image = sess.run(bic_image)
bic_image = np.uint8(bic_image)
# 显示结果图片
cv2.imshow("result_nn", nn_image)
cv2.imshow("result_bi", bi_image)
cv2.imshow("result_bic", bic_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、图片的亮度调整

在使用TensorFlow进行图片的亮度调整时,有两种方式:
1、tf.image.adjust_brightness():亮度的全局调整
2、tf.image.random_brightness():亮度的随机调整

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

img = np.expand_dims(img, 0)
# adjust_brightness
bright_img = tf.image.adjust_brightness(img, delta=.5)
bright_img = tf.squeeze(bright_img)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(bright_img)
result = np.uint8(result)

rand_image = tf.image.random_brightness(img, max_delta=.5)
rand_image = tf.squeeze(rand_image)
with tf.Session() as sess:
  # 运行 'init' op
  result2 = sess.run(rand_image)
result2 = np.uint8(result2)

cv2.imshow("result", result)
cv2.imshow("result2", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图片的对比度调整

在使用TensorFlow进行图片的对比度调整时,有两种方式:
1、tf.image.adjust_contrast():对比度的全局调整
2、tf.image.random_contrast():对比度的随机调整

代码与图片的亮度调整类似,这里就不赘述了。

四、图片的饱和度调整

在使用TensorFlow进行图片的饱和度调整时,使用下列函数:

tf.image.adjust_saturation() 

饱和度调整范围为0~5

下面示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

# 图像的饱和度调整
stand_img = tf.image.adjust_saturation(img, saturation_factor=2.4)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(stand_img)
result = np.uint8(result)

cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、图片的标准化

在使用TensorFlow对图像数据进行训练之前,常需要执行图像的标准化操作,它与归一化是有区别的,归一化不改变图像的直方图,标准化操作会改变图像的直方图。标准化操作使用如下函数:

tf.image.per_image_standardization() 

下面是示例代码:

# encoding:utf-8
# 使用TensorFlow调整图片的亮度
import tensorflow as tf
import cv2
import numpy as np

# 读取图片
img = cv2.imread("1.jpg")
# 显示原始图片
cv2.imshow("resource", img)

# 图像标准化操作
stand_img = tf.image.per_image_standardization(img)
with tf.Session() as sess:
  # 运行 'init' op
  result = sess.run(stand_img)
result = np.uint8(result)

cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

六、图像的色彩空间转化

使用TensorFlow进行图像的色彩空间转化,包括HSV、RGB、灰度色彩空间之间的转化,使用的函数如下所示:

tf.image.rgb_ to_hsv() 
tf.image.rgb_ to_grayscale() 
tf.image.hsv_ to_rgb() 

代码与图像的标准化操作的代码相似,这里不再赘述。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python数据预处理之数据标准化的几种处理方式

    python数据预处理之数据标准化的几种处理方式

    这篇文章主要介绍了python数据预处理之数据标准化的几种处理方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • python mysql 字段与关键字冲突的解决方式

    python mysql 字段与关键字冲突的解决方式

    这篇文章主要介绍了python mysql 字段与关键字冲突的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python爬虫解决验证码的思路及示例

    python爬虫解决验证码的思路及示例

    这篇文章主要介绍了python爬虫解决验证码的思路及示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • 浅谈python可视化包Bokeh

    浅谈python可视化包Bokeh

    这篇文章主要介绍了浅谈python可视化包Bokeh,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-02-02
  • python获取代码运行时间的实例代码

    python获取代码运行时间的实例代码

    今天小编就为大家分享一篇python获取代码运行时间的实例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • Python loguru日志库之高效输出控制台日志和日志记录

    Python loguru日志库之高效输出控制台日志和日志记录

    这篇文章主要介绍了python loguru日志库之高效输出控制台日志和日志记录的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • Python 实现异步调用函数的示例讲解

    Python 实现异步调用函数的示例讲解

    今天小编就为大家分享一篇Python 实现异步调用函数的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python中的os.path路径模块中的操作方法总结

    Python中的os.path路径模块中的操作方法总结

    os.path模块主要集成了针对路径文件夹的操作功能,这里我们就来看一下Python中的os.path路径模块中的操作方法总结,需要的朋友可以参考下
    2016-07-07
  • python实现mysql的读写分离及负载均衡

    python实现mysql的读写分离及负载均衡

    这篇文章主要介绍了python实现mysql的读写分离及负载均衡 ,需要的朋友可以参考下
    2018-02-02
  • Python运维之获取系统CPU信息的实现方法

    Python运维之获取系统CPU信息的实现方法

    今天小编就为大家分享一篇Python运维之获取系统CPU信息的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06

最新评论