对numpy中数组元素的统一赋值实例
Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。
先看两个代码片小例子:
例子1:
In [2]: arr =np.empty((8,4))
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
In [4]: arr[1] = 1
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
例子2:
In [6]: arr1 =np.empty(2) In [8]: arr1 Out[8]:array([ 7.74860419e-304, 7.74860419e-304]) In [9]: arr1 = 0 In [10]: arr1 Out[10]: 0
这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。
例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,
具体方法实现如下:
In [11]: arr1 =np.empty(2) In [12]: arr1 Out[12]: array([0., 0.]) In [13]: arr1[:] Out[13]: array([0., 0.]) In [14]: arr1[:] =0 In [15]: arr1 Out[15]: array([0., 0.])
看起来似乎蛮简单,但是不做一下稍微深入一点的分析,理解起来确实是还有一点点难度。
以上这篇对numpy中数组元素的统一赋值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
如何将anaconda安装配置的mmdetection环境离线拷贝到另一台电脑
这篇文章主要介绍了如何将anaconda安装配置的mmdetection环境离线拷贝到另一台电脑,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-10-10
如何使用Python的xml.etree.ElementTree模块解析和操作 XML 数据
xml.etree.ElementTree是Python标准库中用于解析和操作XML数据的模块,无需安装,支持解析、创建、修改和查询XML数据,本文介绍如何使用Python的xml.etree.ElementTree模块解析和操作 XML 数据,感兴趣的朋友跟随小编一起看看吧2025-01-01
浅谈keras中的keras.utils.to_categorical用法
这篇文章主要介绍了浅谈keras中的keras.utils.to_categorical用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-07-07


最新评论