对python 矩阵转置transpose的实例讲解
在读图片时,会用到这么的一段代码:
image_vector_len = np.prod(image_size)#总元素大小,3*55*47
img = Image.open(path)
arr_img = np.asarray(img, dtype='float64')
arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb。再把这些元素一字排开
transpose是什么意识呢? 看如下例子:
arr1 = array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
这是原来的矩阵。如果对其进行转置,执行arr2 = arr1.transpose((1,0,2))
得到:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
过程是怎样的?
arr1.shape 应该是(2, 2, 4) 意为 2维,2*4矩阵
arr1.transpose(*args) 里面的参数,可以这么理解,他是调换arr1.shape的顺序,咱来给arr1.shape标一下角标哈,(2[0], 2[1], 4[2]) [ ] 里是shape的索引,对吧,
transpose((1, 0, 2)) 的意思是 按照这个顺序 重新设置shape 也就是 (2[1], 2[0], 4[2])
虽然看起来 变换前后的shape都是 2,2,4 , 但是问题来了,transpose是转置
shape按照(1,0,2)的顺序重新设置了, array里的所有元素 也要按照这个规则重新组成新矩阵
比如 8 在arr1中的索引是 (1, 0, 0) 那么按照刚才的变换规则,就是 (0, 1, 0) 看看跟你结果arr2的位置一样了吧,依此类推..
另外一个知识点:
对于一维的shape,转置是不起作用的,举例:
x=linspace(0,4,5) #array([0.,1.,2.,3.,4.]) y=transpose(x) # 会转置失败。
如果想正确使用的话:
x.shape=(5,1) y=transpose(x) #就可以了
以上这篇对python 矩阵转置transpose的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python使用xlrd模块实现操作Excel读写的方法汇总
本文介绍Python中使用xlrd、xlwt、xlutils模块操作Excel文件的方法,xlrd用于读取Excel文件,但2.0.0版本后不支持.xlsx格式,xlwt用于创建和写入Excel文件,而xlutils主要用于复制和处理Excel文件,详细介绍了如何打开文件、获取工作表信息、操作行列数据和处理日期格式数据2024-10-10
Pytorch中使用ImageFolder读取数据集时忽略特定文件
这篇文章主要介绍了Pytorch中使用ImageFolder读取数据集时忽略特定文件,具有一的参考价值需要的小伙伴可以参考一下,希望对你有所帮助2022-03-03
matplotlib 使用 plt.savefig() 输出图片去除旁边的空白区域
这篇文章主要介绍了matplotlib 使用 plt.savefig() 输出图片去除旁边的空白区域,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2021-01-01


最新评论