Tensorflow 训练自己的数据集将数据直接导入到内存

 更新时间:2018年06月19日 09:48:48   作者:ruyiweicas  
这篇文章主要介绍了Tensorflow 训练自己的数据集将数据直接导入到内存,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

制作自己的训练集

下图是我们数据的存放格式,在data目录下有验证集与测试集分别对应iris_test, iris_train

为了向伟大的MNIST致敬,我们采用的数据名称格式和MNIST类似

classification_index.jpg

图像的index都是5的整数倍是因为我们选择测试集的原则是每5个样本,选择一个样本作为测试集,其余的作为训练集和验证集

生成这样数据的过程相对简单,如果有需要python代码的,可以给我发邮件,或者在我的github下载

至此,我们的训练集,测试集,验证集就生成成功了,之所以我们的文件夹只有训练集和测试集是因为我们在后续的训练过程中,会在训练集中分出一部分作为验证集,所以两者暂时合称为训练集

将数据集写入到Tensorflow中

1. 直接写入到队列中

import tensorflow as tf
import numpy as np
import os

train_dir = '/home/ruyiwei/data/iris_train/'#your data directory
def get_files(file_dir):
  '''
  Args:
    file_dir: file directory
  Returns:
    list of images and labels
  '''
  iris = []
  label_iris = []
  contact = []
  label_contact = []
  for file in os.listdir(file_dir):
    name = file.split('_')
    if name[0]=="iris":
      iris.append(file_dir + file)
      label_iris.append(0)
    else:
      contact.append(file_dir + file)
      label_contact.append(1)
  print('There are %d iris\nThere are %d contact' %(len(iris), len(contact)))

  image_list = np.hstack((iris, contact))
  label_list = np.hstack((label_iris, label_contact))

  temp = np.array([image_list, label_list])
  temp = temp.transpose()
  np.random.shuffle(temp)

  image_list = list(temp[:, 0])
  label_list = list(temp[:, 1])
  label_list = [int(i) for i in label_list]

  return image_list, label_list

为了大家更方便的理解和修改代码,我们对代码进行讲解如下

1-3行 : 导入需要的模块
5行: 定义训练集合的位置,这个需要根据自己的机器进行修改
7行: 定义函数 get_files
18行: os.listdir(file_dir) 获取指定目录file_dir下的所有文件名词,也就是我们的训练图片名称
18行:for file in os.listdir(file_dir): 遍历所有的图片
19行: name为一个数组,由于我们根据MINIST来定制的图片名词,所以file.split(‘_')会将图像名称分为两部分,第一部分为classification,通过name[0]来获得分类信息。
21行、24行:iris.append(file_dir + file)/contact.append(file_dir + file)将图像的绝对路径放入到iris/contact
22行、25行:label_iris.append(0)/label_contact.append(1)给对应的图片贴标签
28-29行:将二分类的图像与标签压入到list中
31-33行:合并二分类图像,然后打乱
38行:返回打乱后对应的图像与标签

在spyder下执行如上代码后会返回如下信息

这样图像和标签信息就被load到了内存中,我们接下来就可以利用现有的模型对图像进行分类训练,模型的选择和训练的过程,我们会在后面进行讲解。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python如何修改文件时间属性

    python如何修改文件时间属性

    这篇文章主要介绍了python修改文件时间属性的方法,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-02-02
  • Python使用shutil模块实现文件拷贝

    Python使用shutil模块实现文件拷贝

    这篇文章主要介绍了Python使用shutil模块实现文件拷贝,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • Python Selenium无法打开Chrome浏览器处理自定义浏览器路径的问题及解决方法

    Python Selenium无法打开Chrome浏览器处理自定义浏览器路径的问题及解决方法

    Python Selenium控制Chrome浏览器的过程中,由于安装的Chrome浏览器的版本找不到对应版本的驱动chromedriver.exe文件,下载了小几个版本号的驱动软件都无法正常使用,下面通过本文介绍Python Selenium无法打开Chrome浏览器处理自定义浏览器路径的问题,需要的朋友可以参考下
    2024-08-08
  • Python利用Nagios增加微信报警通知的功能

    Python利用Nagios增加微信报警通知的功能

    Nagios是一款开源的免费网络监视工具,能有效监控Windows、Linux和Unix的主机状态,交换机路由器等网络设置,打印机等,本文给大家介绍Python利用Nagios增加微信报警通知的功能,需要的朋友参考下
    2016-02-02
  • 78行Python代码实现现微信撤回消息功能

    78行Python代码实现现微信撤回消息功能

    这篇文章主要介绍了78行Python代码实现现微信撤回消息功能,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-07-07
  • 获取Django项目的全部url方法详解

    获取Django项目的全部url方法详解

    这篇文章主要介绍了获取Django项目的全部url方法详解,小编觉得挺不错的,这里分享给大家,供需要的朋友参考。
    2017-10-10
  • python多线程使用方法实例详解

    python多线程使用方法实例详解

    这篇文章主要介绍了python多线程使用方法,结合实例形式详细分析了Python多线程thread模块、锁机制相关使用技巧与操作注意事项,需要的朋友可以参考下
    2019-12-12
  • python实现简易计算器功能

    python实现简易计算器功能

    这篇文章主要为大家详细介绍了python实现简易计算器功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • Python基于win32ui模块创建弹出式菜单示例

    Python基于win32ui模块创建弹出式菜单示例

    这篇文章主要介绍了Python基于win32ui模块创建弹出式菜单,结合实例形式分析了Python使用win32ui模块创建弹出式菜单的具体步骤与相关操作技巧,并附带说明了win32ui模块的安装命令,需要的朋友可以参考下
    2018-05-05
  • pyqt5 使用label控件实时显示时间的实例

    pyqt5 使用label控件实时显示时间的实例

    今天小编就为大家分享一篇pyqt5 使用label控件实时显示时间的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06

最新评论