Python Grid使用和布局详解
更新时间:2018年06月30日 08:37:07 作者:genispan
这篇文章主要为大家详细介绍了Python Grid使用和布局,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了Python Grid使用和布局的具体代码,供大家参考,具体内容如下
#!/usr/bin/env python import vtk # 这个示例主要用于将不同的图像对象显示到指定的Grid中 def main(): colors = vtk.vtkNamedColors() # Set the background color. colors.SetColor("BkgColor", [51, 77, 102, 255]) titles = list() textMappers = list() textActors = list() uGrids = list() mappers = list() actors = list() renderers = list() uGrids.append(MakeHexagonalPrism()) titles.append('Hexagonal Prism') uGrids.append(MakeHexahedron()) titles.append('Hexahedron') uGrids.append(MakePentagonalPrism()) titles.append('Pentagonal Prism') uGrids.append(MakePolyhedron()) titles.append('Polyhedron') uGrids.append(MakePyramid()) titles.append('Pyramid') uGrids.append(MakeTetrahedron()) titles.append('Tetrahedron') uGrids.append(MakeVoxel()) titles.append('Voxel') uGrids.append(MakeWedge()) titles.append('Wedge') renWin = vtk.vtkRenderWindow() renWin.SetWindowName('Cell3D Demonstration') iRen = vtk.vtkRenderWindowInteractor() iRen.SetRenderWindow(renWin) # Create one text property for all textProperty = vtk.vtkTextProperty() textProperty.SetFontSize(16) textProperty.SetJustificationToCentered() # Create and link the mappers actors and renderers together. # 为每个独立的文本图形对象创建独立的Mapper和Actors,并绑定至每个grid中 for i in range(0, len(uGrids)): textMappers.append(vtk.vtkTextMapper()) textActors.append(vtk.vtkActor2D())# mappers.append(vtk.vtkDataSetMapper()) actors.append(vtk.vtkActor()) renderers.append(vtk.vtkRenderer()) mappers[i].SetInputData(uGrids[i]) actors[i].SetMapper(mappers[i]) actors[i].GetProperty().SetColor( colors.GetColor3d("Seashell")) renderers[i].AddViewProp(actors[i]) textMappers[i].SetInput(titles[i]) textMappers[i].SetTextProperty(textProperty) textActors[i].SetMapper(textMappers[i]) textActors[i].SetPosition(120, 16) renderers[i].AddViewProp(textActors[i]) renWin.AddRenderer(renderers[i]) gridDimensions = 3 rendererSize = 300 renWin.SetSize(rendererSize * gridDimensions, rendererSize * gridDimensions) # 渲染图形对象至不同的显示区域 for row in range(0, gridDimensions): for col in range(0, gridDimensions): index = row * gridDimensions + col # (xmin, ymin, xmax, ymax) viewport = [ float(col) * rendererSize / (gridDimensions * rendererSize), float(gridDimensions - (row + 1)) * rendererSize / (gridDimensions * rendererSize), float(col + 1) * rendererSize / (gridDimensions * rendererSize), float(gridDimensions - row) * rendererSize / (gridDimensions * rendererSize)] if index > len(actors) - 1: # Add a renderer even if there is no actor. # This makes the render window background all the same color. ren = vtk.vtkRenderer() ren.SetBackground(colors.GetColor3d("BkgColor")) ren.SetViewport(viewport) renWin.AddRenderer(ren) continue renderers[index].SetViewport(viewport) renderers[index].SetBackground(colors.GetColor3d("BkgColor")) renderers[index].ResetCamera() renderers[index].GetActiveCamera().Azimuth(30) renderers[index].GetActiveCamera().Elevation(-30) renderers[index].GetActiveCamera().Zoom(0.85) renderers[index].ResetCameraClippingRange() iRen.Initialize() renWin.Render() iRen.Start() def MakeHexagonalPrism(): """ 3D: hexagonal prism: a wedge with an hexagonal base. Be careful, the base face ordering is different from wedge. """ numberOfVertices = 12 points = vtk.vtkPoints() points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.5, 0.5, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0) points.InsertNextPoint(-0.5, 0.5, 1.0) points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.5, 0.5, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(-0.5, 0.5, 0.0) hexagonalPrism = vtk.vtkHexagonalPrism() for i in range(0, numberOfVertices): hexagonalPrism.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.InsertNextCell(hexagonalPrism.GetCellType(), hexagonalPrism.GetPointIds()) ug.SetPoints(points) return ug def MakeHexahedron(): """ A regular hexagon (cube) with all faces square and three squares around each vertex is created below. Setup the coordinates of eight points (the two faces must be in counter clockwise order as viewed from the outside). As an exercise you can modify the coordinates of the points to create seven topologically distinct convex hexahedras. """ numberOfVertices = 8 # Create the points points = vtk.vtkPoints() points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0) # Create a hexahedron from the points hex_ = vtk.vtkHexahedron() for i in range(0, numberOfVertices): hex_.GetPointIds().SetId(i, i) # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds()) return uGrid def MakePentagonalPrism(): numberOfVertices = 10 # Create the points points = vtk.vtkPoints() points.InsertNextPoint(11, 10, 10) points.InsertNextPoint(13, 10, 10) points.InsertNextPoint(14, 12, 10) points.InsertNextPoint(12, 14, 10) points.InsertNextPoint(10, 12, 10) points.InsertNextPoint(11, 10, 14) points.InsertNextPoint(13, 10, 14) points.InsertNextPoint(14, 12, 14) points.InsertNextPoint(12, 14, 14) points.InsertNextPoint(10, 12, 14) # Pentagonal Prism pentagonalPrism = vtk.vtkPentagonalPrism() for i in range(0, numberOfVertices): pentagonalPrism.GetPointIds().SetId(i, i) # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(pentagonalPrism.GetCellType(), pentagonalPrism.GetPointIds()) return uGrid def MakePolyhedron(): """ Make a regular dodecahedron. It consists of twelve regular pentagonal faces with three faces meeting at each vertex. """ # numberOfVertices = 20 numberOfFaces = 12 # numberOfFaceVertices = 5 points = vtk.vtkPoints() points.InsertNextPoint(1.21412, 0, 1.58931) points.InsertNextPoint(0.375185, 1.1547, 1.58931) points.InsertNextPoint(-0.982247, 0.713644, 1.58931) points.InsertNextPoint(-0.982247, -0.713644, 1.58931) points.InsertNextPoint(0.375185, -1.1547, 1.58931) points.InsertNextPoint(1.96449, 0, 0.375185) points.InsertNextPoint(0.607062, 1.86835, 0.375185) points.InsertNextPoint(-1.58931, 1.1547, 0.375185) points.InsertNextPoint(-1.58931, -1.1547, 0.375185) points.InsertNextPoint(0.607062, -1.86835, 0.375185) points.InsertNextPoint(1.58931, 1.1547, -0.375185) points.InsertNextPoint(-0.607062, 1.86835, -0.375185) points.InsertNextPoint(-1.96449, 0, -0.375185) points.InsertNextPoint(-0.607062, -1.86835, -0.375185) points.InsertNextPoint(1.58931, -1.1547, -0.375185) points.InsertNextPoint(0.982247, 0.713644, -1.58931) points.InsertNextPoint(-0.375185, 1.1547, -1.58931) points.InsertNextPoint(-1.21412, 0, -1.58931) points.InsertNextPoint(-0.375185, -1.1547, -1.58931) points.InsertNextPoint(0.982247, -0.713644, -1.58931) # Dimensions are [numberOfFaces][numberOfFaceVertices] dodechedronFace = [ [0, 1, 2, 3, 4], [0, 5, 10, 6, 1], [1, 6, 11, 7, 2], [2, 7, 12, 8, 3], [3, 8, 13, 9, 4], [4, 9, 14, 5, 0], [15, 10, 5, 14, 19], [16, 11, 6, 10, 15], [17, 12, 7, 11, 16], [18, 13, 8, 12, 17], [19, 14, 9, 13, 18], [19, 18, 17, 16, 15] ] dodechedronFacesIdList = vtk.vtkIdList() # Number faces that make up the cell. dodechedronFacesIdList.InsertNextId(numberOfFaces) for face in dodechedronFace: # Number of points in the face == numberOfFaceVertices dodechedronFacesIdList.InsertNextId(len(face)) # Insert the pointIds for that face. [dodechedronFacesIdList.InsertNextId(i) for i in face] uGrid = vtk.vtkUnstructuredGrid() uGrid.InsertNextCell(vtk.VTK_POLYHEDRON, dodechedronFacesIdList) uGrid.SetPoints(points) return uGrid def MakePyramid(): """ Make a regular square pyramid. """ numberOfVertices = 5 points = vtk.vtkPoints() p = [ [1.0, 1.0, 0.0], [-1.0, 1.0, 0.0], [-1.0, -1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, 1.0] ] for pt in p: points.InsertNextPoint(pt) pyramid = vtk.vtkPyramid() for i in range(0, numberOfVertices): pyramid.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds()) return ug def MakeTetrahedron(): """ Make a tetrahedron. """ numberOfVertices = 4 points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 1, 1) tetra = vtk.vtkTetra() for i in range(0, numberOfVertices): tetra.GetPointIds().SetId(i, i) cellArray = vtk.vtkCellArray() cellArray.InsertNextCell(tetra) unstructuredGrid = vtk.vtkUnstructuredGrid() unstructuredGrid.SetPoints(points) unstructuredGrid.SetCells(vtk.VTK_TETRA, cellArray) return unstructuredGrid def MakeVoxel(): """ A voxel is a representation of a regular grid in 3-D space. """ numberOfVertices = 8 points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 0, 1) points.InsertNextPoint(1, 0, 1) points.InsertNextPoint(0, 1, 1) points.InsertNextPoint(1, 1, 1) voxel = vtk.vtkVoxel() for i in range(0, numberOfVertices): voxel.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(voxel.GetCellType(), voxel.GetPointIds()) return ug def MakeWedge(): """ A wedge consists of two triangular ends and three rectangular faces. """ numberOfVertices = 6 points = vtk.vtkPoints() points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(0, .5, .5) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(1, 0.0, 0.0) points.InsertNextPoint(1, .5, .5) wedge = vtk.vtkWedge() for i in range(0, numberOfVertices): wedge.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(wedge.GetCellType(), wedge.GetPointIds()) return ug def WritePNG(renWin, fn, magnification=1): """ Screenshot Write out a png corresponding to the render window. :param: renWin - the render window. :param: fn - the file name. :param: magnification - the magnification. """ windowToImageFilter = vtk.vtkWindowToImageFilter() windowToImageFilter.SetInput(renWin) windowToImageFilter.SetMagnification(magnification) # Record the alpha (transparency) channel # windowToImageFilter.SetInputBufferTypeToRGBA() windowToImageFilter.SetInputBufferTypeToRGB() # Read from the back buffer windowToImageFilter.ReadFrontBufferOff() windowToImageFilter.Update() writer = vtk.vtkPNGWriter() writer.SetFileName(fn) writer.SetInputConnection(windowToImageFilter.GetOutputPort()) writer.Write() if __name__ == '__main__': main()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
详解Python中内置的NotImplemented类型的用法
这篇文章主要介绍了详解Python中内置的NotImplemented类型的用法,包括对相关的__eq__()和__ne__()两个方法使用的讲解,需要的朋友可以参考下2015-03-03
最新评论