对numpy中的数组条件筛选功能详解

 更新时间:2018年07月02日 11:20:33   作者:grey_csdn  
今天小编就为大家分享一篇对numpy中的数组条件筛选功能详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在程序设计中,时常会遇到数据的唯一化、相同、相异信息的提取等工作,在格式化的向量存储矩阵中南,numpy能够提供比较不错的快速处理功能。

1,唯一化的实现:

In [63]: data = np.array(['int','float','int','boolean','double','boolean'])
In [64]: data
Out[64]:
array(['int', 'float', 'int', 'boolean', 'double', 'boolean'],
  dtype='|S7')
In [65]: np.unique(data)
Out[65]:
array(['boolean', 'double', 'float', 'int'],
  dtype='|S7')
In [66]: data = np.array([1,5,3,6,2,4,1,3,5,7,9])
In [67]: data
Out[67]: array([1, 5, 3, 6, 2, 4, 1, 3, 5, 7, 9])
In [68]: np.unique(data)
Out[68]: array([1, 2, 3, 4, 5, 6, 7, 9])

通过unique可以实现数组的唯一化,并且,唯一化后的返回值会进行排序。

2,交集的实现

In [69]: data1 = np.arange(10)
In [70]: data1
Out[70]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [71]: data2 = np.array([2,8,6,4])
In [72]: np.intersect1d(data1,data2)
Out[72]: array([2, 4, 6, 8])

使用intersect1d可以实现求取两个数组集合的交集。

2,并集计算

In [73]: np.union1d(data1,data2)
Out[73]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

union1d可以实现对两个数组集合的并集计算。

3,子集判断

In [74]: np.in1d(data1,data2)
Out[74]: array([False, False, True, False, True, False, True, False, True, False], dtype=bool)
In [75]: np.in1d(data2,data1)
Out[75]: array([ True, True, True, True], dtype=bool)

通过in1d可以实现对第一个参数数组中的每个元素是否是第二个参数数组子集的判断,而最终通过判断返回的布尔数组即可判断两个参数数组的子集关系。

4,差异判断

4.1,集合差判断

In [76]: np.setdiff1d(data1,data2)
Out[76]: array([0, 1, 3, 5, 7, 9])
In [77]: np.setdiff1d(data2,data1)
Out[77]: array([], dtype=int32)

setdiff1d可以求解出存在于第一个集合但是并不存在于第二个集合中的元素。返回值是一个数组集合。

4.1 数组“异或”求解

In [78]: np.setxor1d(data1,data2)
Out[78]: array([0, 1, 3, 5, 7, 9])
In [79]: np.setxor1d(data2,data1)
Out[79]: array([0, 1, 3, 5, 7, 9])

setxor1d用于求解不同时存在于两个数组中的元素,并返回一个数组集合。两个参数的顺序变化不会改变求解的结果。返回的结果是是一个有序的数组序列。

上面的几个基本的逻辑判断功能如果能够使用得当,能够实现多种筛选判断的操作。

这篇对numpy中的数组条件筛选功能详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python 爬取华为应用市场评论

    python 爬取华为应用市场评论

    项目需要爬取评论数据,在此做一个记录,这里爬取的是web端的数据,以后可能会考虑爬取android app中的数据。
    2021-05-05
  • python中的脚本性能分析

    python中的脚本性能分析

    这篇文章主要介绍了python中的脚本性能分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • 使用python采集Excel表中某一格数据

    使用python采集Excel表中某一格数据

    这篇文章主要介绍了使用python采集Excel表中某一格数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Tensorflow 实现线性回归模型的示例代码

    Tensorflow 实现线性回归模型的示例代码

    这篇文章主要介绍了Tensorflow 实现线性回归模型,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • Python字典添加,删除,查询等相关操作方法详解

    Python字典添加,删除,查询等相关操作方法详解

    这篇文章主要介绍了Python字典添加,删除,查询等相关操作方法详解,需要的朋友可以参考下
    2020-02-02
  • Python单链表简单实现代码

    Python单链表简单实现代码

    这篇文章主要介绍了Python单链表简单实现代码,结合实例形式分析了Python单链表的具体定义与功能实现技巧,需要的朋友可以参考下
    2016-04-04
  • python 实现将文件或文件夹用相对路径打包为 tar.gz 文件的方法

    python 实现将文件或文件夹用相对路径打包为 tar.gz 文件的方法

    今天小编就为大家分享一篇python 实现将文件或文件夹用相对路径打包为 tar.gz 文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • 浅析Python 引号、注释、字符串

    浅析Python 引号、注释、字符串

    这篇文章主要介绍了Python 引号、注释、字符串的相关知识,文中给大家提到了python中一对单引号,一对双引号,三个单双引号的区别和用法,需要的朋友可以参考下
    2019-07-07
  • Python源码学习之PyType_Type和PyBaseObject_Type详解

    Python源码学习之PyType_Type和PyBaseObject_Type详解

    今天给大家带来的是关于Python源码的相关知识学习,文章围绕着PyType_Type和PyBaseObject_Type展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • python实现求纯色彩图像的边框

    python实现求纯色彩图像的边框

    这篇文章主要为大家详细介绍了python实现求纯色彩图像的边框,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04

最新评论