Python爬虫的两套解析方法和四种爬虫实现过程

 更新时间:2018年07月20日 08:14:39   作者:Python火火  
本文想针对某一网页对 python 基础爬虫的两大解析库( BeautifulSoup 和 lxml )和几种信息提取实现方法进行分析,及同一网页爬虫的四种实现方式,需要的朋友参考下吧

对于大多数朋友而言,爬虫绝对是学习 python 的最好的起手和入门方式。因为爬虫思维模式固定,编程模式也相对简单,一般在细节处理上积累一些经验都可以成功入门。本文想针对某一网页对  python 基础爬虫的两大解析库(  BeautifulSoup 和  lxml )和几种信息提取实现方法进行分析,以开  python 爬虫之初见。

基础爬虫的固定模式

笔者这里所谈的基础爬虫,指的是不需要处理像异步加载、验证码、代理等高阶爬虫技术的爬虫方法。一般而言,基础爬虫的两大请求库 urllib 和  requests 中  requests 通常为大多数人所钟爱,当然  urllib 也功能齐全。两大解析库  BeautifulSoup 因其强大的  HTML 文档解析功能而备受青睐,另一款解析库  lxml 在搭配  xpath 表达式的基础上也效率提高。就基础爬虫来说,两大请求库和两大解析库的组合方式可以依个人偏好来选择。

笔者喜欢用的爬虫组合工具是:

  • requests +  BeautifulSoup
  • requests +  lxml

同一网页爬虫的四种实现方式

笔者以腾讯新闻首页的新闻信息抓取为例。

首页外观如下:

 

比如说我们想抓取每个新闻的标题和链接,并将其组合为一个字典的结构打印出来。首先查看 HTML 源码确定新闻标题信息组织形式。

 

可以目标信息存在于 em 标签下  a 标签内的文本和  href 属性中。可直接利用  requests 库构造请求,并用  BeautifulSoup 或者  lxml 进行解析。

方式一: requests +  BeautifulSoup +  select css选择器

 # select method
 import requests
 from bs4 import BeautifulSoup
 headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'} 
 url = 'http://news.qq.com/' 
 Soup = BeautifulSoup(requests.get(url=url, headers=headers).text.encode("utf-8"), 'lxml')
 em = Soup.select('em[class="f14 l24"] a')
 for i in em:
   title = i.get_text()
   link = i['href']
   print({'标题': title, 
 '链接': link
   })

很常规的处理方式,抓取效果如下:

 

方式二: requests +  BeautifulSoup +  find_all 进行信息提取

 # find_all method
 import requests
 from bs4 import BeautifulSoup
 headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
 url = 'http://news.qq.com/'
 Soup = BeautifulSoup(requests.get(url=url, headers=headers).text.encode("utf-8"), 'lxml') 
 em = Soup.find_all('em', attrs={'class': 'f14 l24'})for i in em:
   title = i.a.get_text()
   link = i.a['href']
   print({'标题': title,
      '链接': link
   })

同样是 requests +  BeautifulSoup 的爬虫组合,但在信息提取上采用了  find_all 的方式。效果如下:

 

方式三: requests +  lxml/etree +  xpath 表达式

 # lxml/etree method
 import requests
 from lxml import etree 
 headers = {  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
 url = 'http://news.qq.com/'
 html = requests.get(url = url, headers = headers)
 con = etree.HTML(html.text)
 title = con.xpath('//em[@class="f14 l24"]/a/text()')
 link = con.xpath('//em[@class="f14 l24"]/a/@href')
 for i in zip(title, link):
   print({'标题': i[0],
 '链接': i[1]
   })

使用 lxml 库下的  etree 模块进行解析,然后使用  xpath 表达式进行信息提取,效率要略高于  BeautifulSoup +  select 方法。这里对两个列表的组合采用了  zip 方法。python学习交流群:125240963效果如下:

 

方式四: requests +  lxml/html/fromstring +  xpath 表达式

 # lxml/html/fromstring method
 import requests
 import lxml.html as HTML 
 headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.119 Safari/537.36'}
 url = 'http://news.qq.com/'
 con = HTML.fromstring(requests.get(url = url, headers = headers).text)
 title = con.xpath('//em[@class="f14 l24"]/a/text()')
 link = con.xpath('//em[@class="f14 l24"]/a/@href')
 for i in zip(title, link):
   print({'标题': i[0],'链接': i[1]
   })

跟方法三类似,只是在解析上使用了 lxml 库下的  html.fromstring 模块。抓取效果如下:

 

很多人觉得爬虫有点难以掌握,因为知识点太多,需要懂前端、需要python熟练、还需要懂数据库,更不用说正则表达式、XPath表达式这些。其实对于一个简单网页的数据抓取,不妨多尝试几种抓取方案,举一反三,也更能对python爬虫有较深的理解。长此以往,对于各类网页结构都有所涉猎,自然经验丰富,水到渠成。

总结

以上所述是小编给大家介绍的Python爬虫的两套解析方法和四种爬虫实现过程,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

相关文章

  • pytorch 多分类问题,计算百分比操作

    pytorch 多分类问题,计算百分比操作

    这篇文章主要介绍了pytorch 多分类问题,计算百分比操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python轻松搞定视频剪辑重复性工作问题

    Python轻松搞定视频剪辑重复性工作问题

    这篇文章主要介绍了Python轻松搞定视频剪辑重复性工作问题,大家做视频剪辑的时候,还在重复性工作吗?今天,小编来教大家如何利用Python帮你搞定这些重复性的剪辑工作,需要的朋友可以参考一下
    2021-12-12
  • PyTorch中的拷贝与就地操作详解

    PyTorch中的拷贝与就地操作详解

    这篇文章主要给大家介绍了关于PyTorch中拷贝与就地操作的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • python Requsets下载开源网站的代码(带索引 数据)

    python Requsets下载开源网站的代码(带索引 数据)

    这篇文章主要介绍了python Requsets下载开源网站的代码(带索引 数据),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • Python使用到第三方库PyMuPDF图片与pdf相互转换

    Python使用到第三方库PyMuPDF图片与pdf相互转换

    今天为大家介绍个比较简单的Python第三方库PyMuPDF进行图片和pdf之间的相互转换,以下就是利用PyMuPDF进行pdf与图片之间的互转
    2019-05-05
  • python基于pexpect库自动获取日志信息

    python基于pexpect库自动获取日志信息

    这篇文章主要介绍了python基于pexpect库自动获取日志信息的方法,帮助大家更好的利用python高效办公,感兴趣的朋友可以了解下
    2021-02-02
  • 使用python实现希尔、计数、基数基础排序的代码

    使用python实现希尔、计数、基数基础排序的代码

    希尔排序是一个叫希尔的数学家提出的一种优化版本的插入排序。这篇文章主要介绍了使用python实现希尔、计数、基数基础排序,需要的朋友可以参考下
    2019-12-12
  • python实现批量下载新浪博客的方法

    python实现批量下载新浪博客的方法

    这篇文章主要介绍了python实现批量下载新浪博客的方法,涉及Python页面抓取的相关实现技巧,需要的朋友可以参考下
    2015-06-06
  • python基础之递归函数

    python基础之递归函数

    这篇文章主要介绍了python递归函数,实例分析了Python中返回一个返回值与多个返回值的方法,需要的朋友可以参考下
    2021-10-10
  • 在Python程序和Flask框架中使用SQLAlchemy的教程

    在Python程序和Flask框架中使用SQLAlchemy的教程

    SQLAlchemy为Python程序与SQL语句之间建立了映射,是Python操作数据库的利器,这里我们将来看在Python程序和Flask框架中使用SQLAlchemy的教程,需要的朋友可以参考下
    2016-06-06

最新评论