对TensorFlow中的variables_to_restore函数详解

 更新时间:2018年07月30日 10:08:55   转载 作者:修炼之路  
今天小编就为大家分享一篇对TensorFlow中的variables_to_restore函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

variables_to_restore函数,是TensorFlow为滑动平均值提供。之前,也介绍过通过使用滑动平均值可以让神经网络模型更加的健壮。我们也知道,其实在TensorFlow中,变量的滑动平均值都是由影子变量所维护的,如果你想要获取变量的滑动平均值需要获取的是影子变量而不是变量本身。

1、滑动平均值模型文件的保存

import tensorflow as tf
 
if __name__ == "__main__":
 v = tf.Variable(0.,name="v")
 #设置滑动平均模型的系数
 ema = tf.train.ExponentialMovingAverage(0.99)
 #设置变量v使用滑动平均模型,tf.all_variables()设置所有变量
 op = ema.apply([v])
 #获取变量v的名字
 print(v.name)
 #v:0
 #创建一个保存模型的对象
 save = tf.train.Saver()
 sess = tf.Session()
 #初始化所有变量
 init = tf.initialize_all_variables()
 sess.run(init)
 #给变量v重新赋值
 sess.run(tf.assign(v,10))
 #应用平均滑动设置
 sess.run(op)
 #保存模型文件
 save.save(sess,"./model.ckpt")
 #输出变量v之前的值和使用滑动平均模型之后的值
 print(sess.run([v,ema.average(v)]))
 #[10.0, 0.099999905]

上面的代码,是如何来保存一个滑动平均值的模型文件,之前有介绍过滑动平均值和模型文件的保存,所以这里就不再重复了。

2、滑动平均值模型文件的读取

 v = tf.Variable(1.,name="v")
 #定义模型对象
 saver = tf.train.Saver({"v/ExponentialMovingAverage":v})
 sess = tf.Session()
 saver.restore(sess,"./model.ckpt")
 print(sess.run(v))
 #0.0999999

对于模型文件的读取,在上一篇博客中有介绍过,这里特别需要注意的一个地方就是,在使用tf.train.Saver函数中,所传递的模型参数是{"v/ExponentialMovingAverage":v}而不是{"v":v},如果你使用的是后面的参数,那么你得到的结果将是10而不是0.09,那是因为后者获取的是变量本身而不是影子变量。是不是感觉使用这种方式来读取模型文件的时候,还需要输入一大串的变量名称。

3、variables_to_restore函数的使用

 v = tf.Variable(1.,name="v")
 #滑动模型的参数的大小并不会影响v的值
 ema = tf.train.ExponentialMovingAverage(0.99)
 print(ema.variables_to_restore())
 #{'v/ExponentialMovingAverage': <tf.Variable 'v:0' shape=() dtype=float32_ref>}
 sess = tf.Session()
 saver = tf.train.Saver(ema.variables_to_restore())
 saver.restore(sess,"./model.ckpt")
 print(sess.run(v))
 #0.0999999

通过使用variables_to_restore函数,可以使在加载模型的时候将影子变量直接映射到变量的本身,所以我们在获取变量的滑动平均值的时候只需要获取到变量的本身值而不需要去获取影子变量。

以上这篇对TensorFlow中的variables_to_restore函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 关于python 的legend图例,参数使用说明

    关于python 的legend图例,参数使用说明

    这篇文章主要介绍了关于python 的legend图例,参数使用说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python字符串split及rsplit方法原理详解

    Python字符串split及rsplit方法原理详解

    这篇文章主要介绍了Python字符串split及rsplit方法原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • python实现udp传输图片功能

    python实现udp传输图片功能

    这篇文章主要为大家详细介绍了python实现udp传输图片功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • python图书管理系统

    python图书管理系统

    这篇文章主要为大家详细介绍了python图书管理系统的实现代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 30行Python代码实现高分辨率图像导航的方法

    30行Python代码实现高分辨率图像导航的方法

    这篇文章主要介绍了30行Python代码实现高分辨率图像导航的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-05-05
  • tensorflow将图片保存为tfrecord和tfrecord的读取方式

    tensorflow将图片保存为tfrecord和tfrecord的读取方式

    今天小编就为大家分享一篇tensorflow将图片保存为tfrecord和tfrecord的读取方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Pytorch中index_select() 函数的实现理解

    Pytorch中index_select() 函数的实现理解

    这篇文章主要介绍了Pytorch中index_select() 函数的实现理解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • TensorFlow中如何确定张量的形状实例

    TensorFlow中如何确定张量的形状实例

    这篇文章主要介绍了TensorFlow中如何确定张量的形状实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 详解python的几种标准输出重定向方式

    详解python的几种标准输出重定向方式

    这篇文章是基于Python2.7版本,介绍常见的几种标准输出(stdout)重定向方式。显然,这些方式也适用于标准错误重定向。学习python的小伙伴们可以参考借鉴。
    2016-08-08
  • 深入理解Python 关于supper 的 用法和原理

    深入理解Python 关于supper 的 用法和原理

    这篇文章主要介绍了Python 关于supper 的 用法和原理分析,非常不错,具有参考借鉴价值,需要的朋友参考下吧
    2018-02-02

最新评论