python使用knn实现特征向量分类

 更新时间:2018年12月26日 11:41:35   作者:RossieSeven  
这篇文章主要为大家详细介绍了python使用knn实现特征向量分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

这是一个使用knn把特征向量进行分类的demo。

Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集是一些已经被手动打好标签的数据,knn会根据你打好的标签来挖掘同类对象的相似点,从而推算sample的标签。

Knn算法的准确度受k影响较大,可能需要写个循环试一下选出针对不同数据集的最优的k。

至于如何拿到特征向量,可以参考之前的博文。

代码:

#-*- coding: utf-8 -*-
__author__ = 'Rossie'
from numpy import *
import operator

'''构造数据'''
def createDataSet():
  characters=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
  labels=['A','A','B','B']
  return characters,labels

'''从文件中读取数据,将文本记录转换为矩阵,提取其中特征和类标'''
def file2matrix(filename):
  fr=open(filename)
  arrayOLines=fr.readlines()
  numberOfLines=len(arrayOLines)    #得到文件行数
  returnMat=zeros((numberOfLines,3))   #创建以零填充的numberOfLines*3的NumPy矩阵
  classLabelVector=[]
  index=0
  for line in arrayOLines:       #解析文件数据到列表
    line=line.strip()
    listFromLine=line.split('\t')
    returnMat[index, :]=listFromLine[0:3]
    classLabelVector.append(listFromLine[-1])
    index+=1
  return returnMat,classLabelVector   #返回特征矩阵和类标集合

'''归一化数字特征值到0-1范围'''
'''输入为特征值矩阵'''
def autoNorm(dataSet):
  minVals=dataSet.min(0)
  maxVals=dataSet.max(0)
  ranges=maxVals-minVals
  normDataSet=zeros(shape(dataSet))
  m=dataSet.shape[0]
  normDataSet=dataSet-tile(minVals,(m,1))
  normDataSet=normDataSet/tile(ranges,(m,1))
  return normDataSet,ranges, minVals
  
def classify(sample,dataSet,labels,k):
  dataSetSize=dataSet.shape[0]   #数据集行数即数据集记录数
  '''距离计算'''
  diffMat=tile(sample,(dataSetSize,1))-dataSet     #样本与原先所有样本的差值矩阵
  sqDiffMat=diffMat**2   #差值矩阵平方
  sqDistances=sqDiffMat.sum(axis=1)    #计算每一行上元素的和
  distances=sqDistances**0.5  #开方
  sortedDistIndicies=distances.argsort()   #按distances中元素进行升序排序后得到的对应下标的列表
  '''选择距离最小的k个点'''
  classCount={}
  for i in range(k):
    voteIlabel=labels[sortedDistIndicies[i]]
    classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
  '''从大到小排序'''
  sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
  return sortedClassCount[0][0]

'''针对约会网站数据的测试代码'''
def datingClassTest():
  hoRatio=0.20     #测试样例数据比例
  datingDataMat,datingLabels=file2matrix('datingTestSet1.txt')
  normMat, ranges, minVals=autoNorm(datingDataMat)
  m =normMat.shape[0]
  numTestVecs=int(m*hoRatio)
  errorCount=0.0
  k=4
  for i in range(numTestVecs):
    classifierResult=classify(normMat[i, : ],normMat[numTestVecs:m, : ],datingLabels[numTestVecs:m],k)
    print("The classifier came back with: %s, thereal answer is: %s" %(classifierResult, datingLabels[i]))
    if(classifierResult!= datingLabels [i] ) :
      errorCount += 1.0
  print("the total error rate is: %f" % (errorCount/float(numTestVecs)))

def main():
  sample=[0,0]#简单样本测试
  sampleText = [39948,6.830795,1.213342]#文本中向量样本测试
  k=3
  group,labels=createDataSet()
  label1=classify(sample,group,labels,k)#简单样本的分类结果
  fileN = "datingTestSet.txt"
  matrix,label = file2matrix(fileN)
  label2 =classify(sampleText,matrix,label,k)#文本样本的分类结果
  print("ClassifiedLabel of the simple sample:"+label1)
  print("Classified Label of the textsample:"+label2)



if __name__=='__main__':
  main()
  #datingClassTest()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python中的enumerate函数使用方法详解

    Python中的enumerate函数使用方法详解

    enumerate()是python的内置函数,适用于python2.x和python3.x,这篇文章主要给大家介绍了关于Python中的enumerate函数使用方法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2024-06-06
  • Python win32com 操作Exce的l简单方法(必看)

    Python win32com 操作Exce的l简单方法(必看)

    下面小编就为大家带来一篇Python win32com 操作Exce的l简单方法(必看)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • kaggle数据分析家庭电力消耗过程详解

    kaggle数据分析家庭电力消耗过程详解

    这篇文章主要为大家介绍了kaggle数据分析家庭电力消耗示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-12-12
  • 详解安装mitmproxy以及遇到的坑和简单用法

    详解安装mitmproxy以及遇到的坑和简单用法

    mitmproxy 是一款工具,也可以说是 python 的一个包,在命令行操作的工具。这篇文章主要介绍了详解安装mitmproxy以及遇到的坑和简单用法,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • Python 用Redis简单实现分布式爬虫的方法

    Python 用Redis简单实现分布式爬虫的方法

    本篇文章主要介绍了Python 用Redis简单实现分布式爬虫的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • python多项式拟合之np.polyfit 和 np.polyld详解

    python多项式拟合之np.polyfit 和 np.polyld详解

    这篇文章主要介绍了python多项式拟合之np.polyfit 和 np.polyld的实例代码,python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等,需要的朋友跟随小编一起学习吧
    2020-02-02
  • Python可视化神器pyecharts之绘制地理图表练习

    Python可视化神器pyecharts之绘制地理图表练习

    这篇文章主要介绍了Python可视化神器pyecharts之绘制地理图表,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • python多进程和多线程究竟谁更快(详解)

    python多进程和多线程究竟谁更快(详解)

    下面小编就为大家带来一篇python多进程和多线程究竟谁更快(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • Python使用cx_Oracle模块操作Oracle数据库详解

    Python使用cx_Oracle模块操作Oracle数据库详解

    这篇文章主要介绍了Python使用cx_Oracle模块操作Oracle数据库,结合实例形式较为详细的分析了cx_Oracle模块的下载、安装及针对Oracle数据库的连接、执行SQL语句、存储过程等相关操作技巧,需要的朋友可以参考下
    2018-05-05
  • Python实现原神抽卡的方法

    Python实现原神抽卡的方法

    这篇文章主要为大家介绍了Python实现原神抽卡的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12

最新评论