Python 确定多项式拟合/回归的阶数实例

 更新时间:2018年12月29日 11:03:54   作者:薛定谔的DBA  
今天小编就为大家分享一篇Python 确定多项式拟合/回归的阶数实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

通过 1至10 阶来拟合对比 均方误差及R评分,可以确定最优的“最大阶数”。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression,Perceptron
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import train_test_split
 
X = np.array([-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]).reshape(-1, 1)
y = np.array(2*(X**4) + X**2 + 9*X + 2)
#y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)
 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
rmses = []
degrees = np.arange(1, 10)
min_rmse, min_deg,score = 1e10, 0 ,0
 
for deg in degrees:
	# 生成多项式特征集(如根据degree=3 ,生成 [[x,x**2,x**3]] )
	poly = PolynomialFeatures(degree=deg, include_bias=False)
	x_train_poly = poly.fit_transform(x_train)
 
	# 多项式拟合
	poly_reg = LinearRegression()
	poly_reg.fit(x_train_poly, y_train)
	#print(poly_reg.coef_,poly_reg.intercept_) #系数及常数
	
	# 测试集比较
	x_test_poly = poly.fit_transform(x_test)
	y_test_pred = poly_reg.predict(x_test_poly)
	
	#mean_squared_error(y_true, y_pred) #均方误差回归损失,越小越好。
	poly_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred))
	rmses.append(poly_rmse)
	# r2 范围[0,1],R2越接近1拟合越好。
	r2score = r2_score(y_test, y_test_pred)
	
	# degree交叉验证
	if min_rmse > poly_rmse:
		min_rmse = poly_rmse
		min_deg = deg
		score = r2score
	print('degree = %s, RMSE = %.2f ,r2_score = %.2f' % (deg, poly_rmse,r2score))
		
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(degrees, rmses)
ax.set_yscale('log')
ax.set_xlabel('Degree')
ax.set_ylabel('RMSE')
ax.set_title('Best degree = %s, RMSE = %.2f, r2_score = %.2f' %(min_deg, min_rmse,score)) 
plt.show()

Python 确定多项式拟合/回归的阶数

Python 确定多项式拟合/回归的阶数

因为因变量 Y = 2*(X**4) + X**2 + 9*X + 2 ,自变量和因变量是完整的公式,看图很明显,degree >=4 的都符合,拟合函数都正确。(RMSE 最小,R平方非负且接近于1,则模型最好

如果将 Y 值改为如下:

y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)

Python 确定多项式拟合/回归的阶数

Python 确定多项式拟合/回归的阶数

degree=3 是最好的,且 r 平方也最接近于1(注意:如果 R 平方为负数,则不准确,需再次测试。因样本数据较少,可能也会判断错误)。

以上这篇Python 确定多项式拟合/回归的阶数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python实现网站表单提交和模板

    Python实现网站表单提交和模板

    今天小编就为大家分享一篇关于Python实现网站表单提交和模板,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • python实现Oracle查询分组的方法示例

    python实现Oracle查询分组的方法示例

    这篇文章主要介绍了python实现Oracle查询分组的方法,结合实例形式分析了python使用group by子句及having子句实现Oracle查询分组的相关操作技巧,需要的朋友可以参考下
    2020-04-04
  • 浅谈python opencv对图像颜色通道进行加减操作溢出

    浅谈python opencv对图像颜色通道进行加减操作溢出

    这篇文章主要介绍了浅谈python opencv对图像颜色通道进行加减操作溢出,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python安装spark的详细过程

    Python安装spark的详细过程

    这篇文章主要介绍了Python安装spark的详细过程,本文通过图文实例代码相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-10-10
  • 利用Python抓取网页数据的多种方式与示例详解

    利用Python抓取网页数据的多种方式与示例详解

    在数据科学和网络爬虫领域,网页数据抓取是非常重要的一项技能,Python 是进行网页抓取的流行语言,因为它拥有强大的第三方库,能够简化网页解析和数据提取的过程,本篇文章将介绍几种常见的网页数据抓取方法,需要的朋友可以参考下
    2025-04-04
  • python实现MongoDB的双活示例

    python实现MongoDB的双活示例

    本文主要介绍了python实现MongoDB的双活示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 分享十个Python超级好用提高工作效率的自动化脚本

    分享十个Python超级好用提高工作效率的自动化脚本

    在这个自动化时代,我们有很多重复无聊的工作要做。 想想这些你不再需要一次又一次地做的无聊的事情,让它自动化,让你的生活更轻松。本文分享了10个Python自动化脚本,希望对大家有所帮助
    2022-11-11
  • pyenv切换不同的python版本的实现步骤

    pyenv切换不同的python版本的实现步骤

    pyenv是一个流行的Python版本管理工具,支持在同一台机器上安装和切换多个Python版本,本文就来介绍一下pyenv切换不同的python版本,感兴趣的可以了解一下
    2024-12-12
  • python生成xml时规定dtd实例方法

    python生成xml时规定dtd实例方法

    在本篇文章里小编给大家整理的是关于python生成xml时规定dtd实例方法,需要的朋友们学习参考下。
    2020-09-09
  • Python函数值传递引用传递及形式参数和实际参数的区别

    Python函数值传递引用传递及形式参数和实际参数的区别

    这篇文章主要介绍了Python函数值传递引用传递及形式参数和实际参数的区别,具有一定的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助
    2022-05-05

最新评论