Python数据可视化库seaborn的使用总结

 更新时间:2019年01月15日 11:13:48   作者:yhlp  
这篇文章主要介绍了Python数据可视化库seaborn的使用总结,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看。http://seaborn.pydata.org/


从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大。

1.首先我们还是需要先引入库,不过这次要用到的python库比较多。

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

2.sns.set_style():不传入参数用的就是seaborn默认的主题风格,里面的参数共有五种

  • darkgrid
  • whitegrid
  • dark
  • white
  • ticks

我比较习惯用whitegrid。

3.下面说一下seaborn里面的调色板,我们可以用sns.color_palette()获取到这些颜色,然后用sns.palplot()将这些色块打印出来。color_palette()函数还可以传入一些参数

sns.palplot(sns.color_palette("hls",n))#显示出n个不同颜色的色块
sns.palplot(sns.color_palette("Paired",2n))#显示出2n个不同颜色的色块,且这些颜色两两之间是相近的
sns.palplot(sns.color_palette("color"))#由浅入深显示出同一颜色的色块
sns.palplot(sns.color_palette("color_r"))##由深入浅显示出同一颜色的色块
sns.palplot(sns.color_palette("cubehelix",n))#显示出n个颜色呈线性变化的色块
sns.palplot(sns.cubehelix_palette(k,start=m,rot=n))#显示出k个start(0,3)为m,rot(-1,1)为n的呈线性变化的色块
sns.palplot(sns.light_palette("color"))#将一种颜色由浅到深显示
sns.palplot(sns.dark_palette("color"))#将一种颜色由深到浅显示
sns.palplot(sns.dark_palette("color",reverse=bool))#reverse的值为False,则将一种颜色由深到浅显示;若为True,则将一种颜色由浅到深显示


4.sns.kdeplot(x,y,cmap=pal):绘制核密度分布图。


5.sns.distplot(x,kde=bool,bins=n):kde代表是否进行核密度估计,也就是是否绘制包络线,bins指定绘制的条形数目。


6.根据均值和协方差绘图:

首先我们要根据均值和协方差获取数据

mean,cov = [m,n],[(a,b),(c,d)]#指定均值和协方差
data = np.random.multivariate_normal(mean,cov,e)#根据均值和协方差获取e个随机数据
df = pd.DataFrame(data,columns=["x","y"])#将数据指定为DataFrame格式
df


然后绘制图像

sns.jointplot(x="x",y="y",data=df) #绘制散点图


sns.jointplot(x="x",y="y",data=df)可以绘制出x和y单变量的条形图以及x与y多变量的散点图。

7.在jointplot()函数中传入kind=“hex”,能够在数据量比较大时让我们更清晰地看到数据的分布比重。

x,y = np.random.multivariate_normal(mean,cov,2000).T
with sns.axes_style("white"):
  sns.jointplot(x=x,y=y,kind="hex",color="c")

绘制出的图像如下


8.sns.pairplot(df):绘制出各变量之间的散点图与条形图,且对角线均为条形图。


在这里我们可以先使用df = sns.load_dataset("")将seaborn中原本带有的数据读入或用pandas读取。

9.绘制回归分析图:这里可以用两个函数regplot()lmplot(),用regplot()更好一些。


如果两个变量不适合做回归分析,我们可以传入x_jitter()y_jitter()让x轴或y轴的数据轻微抖动一些,得出较为准确的结果。


10.sns.stripplot(x="",y="",data=df,jitter=bool):绘制一个特征变量中的多个变量与另一变量关系的散点图,jitter控制数据是否抖动。


11.sns.swarmplot(x="",y="",hue="",data=df):绘制页状散点图,hue指定对数据的分类,由于在大量数据下,上面的散点图会影响到我们对数据的观察,这种图能够更清晰地观察到数据分布。


12.sns.boxplot(x="",y="",hue="",data=df,orient="h"):绘制盒形图,hue同样指定对数据的分类。在统计学中有四分位数的概念,第一个四分位记做Q1,第二个四分位数记做Q2,第三个四分位数记做Q3,Q3-Q1得到的结果Q叫做四分位距,如果一个数n,n的范围是n<Q1-1.5Q或n>Q3+1.5Q,则称n为离群点,也就是不符合数据规范的点,利用盒形图可以很清晰地观察到离群点。如果传入orient则画出的盒形图是横向的。


13.sns.violinplot(x="",y="",data=df,hue="",split=bool):绘制小提琴图,split表示是否将两类数据分开绘制,如果为True,则不分开绘制,默认为False。


14.还可以将页状散点图和小提琴图在一起绘制,只需将两个绘图命令


inner="None"表示去除小提琴图内部的形状。

15.sns.barplot(x="",y="",hue="",data=df):按hue的数据分类绘制条形图。


16.sns.pointplot(x="",y="",hue="",data=df):绘制点图,点图可以更好的描述数据的变化差异。


17.我们还可以传入其他参数:

sns.pointplot(x="class",y="survived",hue="sex",data=titanic,
       palette={"male":"#02ff96","female":"#0980e6"},#指定曲线的颜色
       markers=["s","d"],linestyles=["-","-."])#指定曲线的点型和线型

绘制出的图像如下


18.sns.factorplot(x="", y="", hue="", data=df):绘制多层面板分类图。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips)

绘制的图像如下


19.sns.factorplot(x="",y="",hue="",data=df,kind=""):kind中指定要画图的类型。

sns.factorplot(x="day",y="total_bill",hue="smoker",data=tips,kind="bar")

sns.factorplot(x="day",y="total_bill",hue="smoker",col="time",data=tips,kind="swarm")

sns.factorplot(x="time",y="total_bill",hue="smoker",col="day",data=tips,kind="box",size=5,aspect=0.8) #aspect指定横纵比


20.sns.factorplot()的参数:

  • x,y,hue 数据集变量 变量名。
  • date 数据集 数据集名。
  • row,col 更多分类变量进行平铺显示 变量名。
  • col_wrap 每行的最高平铺数 整数。
  • estimator 在每个分类中进行矢量到标量的映射 矢量。
  • ci 置信区间 浮点数或None。
  • n_boot 计算置信区间时使用的引导迭代次数 整数。
  • units 采样单元的标识符,用于执行多级引导和重复测量设计 数据变量或向量数据。
  • order, hue_order 对应排序列表 字符串列表。
  • row_order, col_order 对应排序列表 字符串列表。
  • kind : 可选:point 默认, bar 柱形图, count 频次, box 箱体, violin 提琴, strip 散点,swarm 分散点 size 每个面的高度(英寸) 标量 aspect 纵横比 标量 orient 方向 "v"/"h" color 颜色 matplotlib颜色 palette 调色板 seaborn颜色色板或字典 legend hue的信息面板 True/False legend_out 是否扩展图形,并将信息框绘制在中心右边 True/False share{x,y} 共享轴线 True/False。

21.sns.FacetGrid():这是一个很重要的绘图函数。

g = sns.FacetGrid(tips,col="time")
g.map(plt.hist,"tip")

g = sns.FacetGrid(tips,col="sex",hue="smoker",size=5,aspect=1)
g.map(plt.scatter,"total_bill","tip",alpha=0.3,s=100)#alpha指定点的透明度,s指定点的大小
g.add_legend()#添加图例

g = sns.FacetGrid(tips,col="day",size=4,aspect=0.8)
g.map(sns.barplot,"sex","total_bill")

22.sns.PairGrid():将各变量间的关系成对绘制。

iris = sns.load_dataset("iris")
g = sns.PairGrid(iris)
g.map(plt.scatter)


23.g.map_diag()g.map_offdiag():绘制对角线和非对角线的图形

g = sns.PairGrid(iris)
g.map_diag(plt.hist)  #指定对角线绘图类型
g.map_offdiag(plt.scatter)  #指定非对角线绘图类型

g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()

g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"], hue="species",size=3)
g.map(plt.scatter)

g = sns.PairGrid(tips, hue="size", palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend()


24.sns.heatmap():绘制热度图,热度图可以很清楚看到数据的变化情况以及变化过程中的最大值和最小值。

uniform_data = np.random.rand(3, 3)
print (uniform_data)
heatmap = sns.heatmap(uniform_data)


25.向heatmap()中传入参数vmin=vmax=

ax = sns.heatmap(uniform_data,vmin=0.2,vmax=0.5) 
#超过最大值都是最大值的颜色,小于最小值都是最小值的颜色


26.

normal_data = np.random.randn(3, 3)
print (normal_data)
ax = sns.heatmap(normal_data, center=0)  #center指定右侧图例的中心值


27.

flights = sns.load_dataset("flights")
flights = flights.pivot("month", "year", "passengers")
ax = sns.heatmap(flights, annot=True,fmt="d",linewidth=0.5)  
#annot指定是否显示数据,fmt指定数据的显示格式,linewidth指定数据格子间的距离


28.

ax = sns.heatmap(flights, cmap="YlGnBu",cbar=True) 
#cmap指定图形颜色,cbar表示是否绘制右侧图例。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 中yaml文件用法大全

    python 中yaml文件用法大全

    本文主要是总结yaml常用的一些数据形式,对于我们正常的项目使用,已经足够用了,接下来通过本文给大家分享python 中yaml文件用法,需要的朋友参考下吧
    2021-07-07
  • Pydantic中BaseConfig的具体使用

    Pydantic中BaseConfig的具体使用

    本文主要介绍了Pydantic中BaseConfig的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-06-06
  • python 内置库wsgiref的使用(WSGI基础入门)

    python 内置库wsgiref的使用(WSGI基础入门)

    WSGI(web服务器网关接口)主要规定了服务器端和应用程序之间的接口,即规定了请求的URL到后台处理函数之间的映射该如何实现。wsgiref是一个帮助开发者开发测试的Python内置库,程序员可以通过这个库了解WSGI的基本运行原理,但是不能把它用在生产环境上。
    2021-06-06
  • 基于Python和TFIDF实现提取文本中的关键词

    基于Python和TFIDF实现提取文本中的关键词

    TFIDF 的工作原理是按比例增加一个词语在文档中出现的次数,但会被它所在的文档数量抵消。本文将利用TFIDF实现提取文本中的关键词,感兴趣的小伙伴快跟随小编一起学习一下吧
    2022-04-04
  • Python的加密模块md5、sha、crypt使用实例

    Python的加密模块md5、sha、crypt使用实例

    这篇文章主要介绍了Python的加密模块md5、sha、crypt使用实例,本文给出了MD5和crypt模块的代码实例,需要的朋友可以参考下
    2014-09-09
  • Selenium自动化测试实现窗口切换

    Selenium自动化测试实现窗口切换

    这篇文章主要介绍了Selenium自动化测试实现窗口切换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • 如何利用python实现kmeans聚类

    如何利用python实现kmeans聚类

    K-Means是聚类算法的一种,以距离来判断数据点间的相似度并对数据进行聚类,下面这篇文章主要给大家介绍了关于如何利用python实现kmeans聚类的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • 使用python进行文件处理的库存管理

    使用python进行文件处理的库存管理

    库存管理是任何处理实物商品的企业的一个重要方面,Python 提供了各种库来读取和写入文件,使其成为管理库存的绝佳选择,它允许我们使用 Python 等编程语言来操作计算机文件系统上的文件,在本文中,我们将探讨如何使用文件处理在 Tkinter 中实现库存管理系统
    2023-09-09
  • Anaconda虚拟环境中安装cudatoolkit和cudnn包并配置tensorflow-gpu的教程

    Anaconda虚拟环境中安装cudatoolkit和cudnn包并配置tensorflow-gpu的教程

    这篇文章详细介绍了如何在Anaconda虚拟环境中配置PyTorch和TensorFlow-GPU,并提供了详细的步骤和注意事项,通过图文讲解的非常详细,需要的朋友可以参考下
    2025-02-02
  • opencv-python图像增强解读

    opencv-python图像增强解读

    这篇文章主要介绍了opencv-python图像增强解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05

最新评论