opencv python统计及绘制直方图的方法

 更新时间:2019年01月21日 11:46:21   作者:天煞孤星0严  
这篇文章主要介绍了opencv python统计及绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图。

统计直方图数据

首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理

BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图。但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31。。。240到255。可以将256个值分成16份,每份计算综合。每个分成的小组就是一个BIN(箱)。在opencv中使用histSize表示BINS。

DIMS: 数据的参数数目。当前例子当中,对收集到的数据只考虑灰度值,所以该值为1。

RANGE: 灰度值范围,通常是[0,256],也就是灰度所有的取值范围。

统计直方图同样有两种方法,使用opencv统计直方图,函数如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

该函数的参数在了解以上术语加上自己百度后可以简单应用

使用numpy统计函数,主要应用 numpy.histogram() 函数(还有 np.bincount() ,还未尝试,读者可以自己尝试,大抵使用方法相同)

hist,bins = np.histogram(img.ravel(),256,[0,256])

opencv处理速度优于numpy,同时对于学习opencv的同学来说,多运用cv的处理方法无疑更利于学习。

绘制直方图

绘制直方图一般使用Matplotlib绘制 ,这里要提一下matplotlib的 matplotlib.pyplot.hist() 函数,该函数可以直接统计绘制中方图。统计函数为 calcHist()np.histogram()
这是处理的样图

下面是代码实现

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('/home/yc/Pictures/cat.jpg',0)
plt.hist(img.ravel(),256,[0,256]);
plt.show()

效果

灰度直方图

当然,在颜色图像检索之类用法时,我们需要的是BGR直方图,原理类似,统计时使用 cv2.calcHist()

函数

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('/home/yc/Pictures/cat.jpg',1)
color = ('b','g','r')
for i,col in enumerate(color):
  histr = cv2.calcHist([img],[i],None,[256],[0,256])
  plt.plot(histr,color = col)
  plt.xlim([0,256])
plt.show()

效果如下

BGR直方图

此外,再介绍一种很原始的计算灰度直方图的方法……感觉代码注释的很完整,相信读者也可以看懂

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt

def main():
  img=cv2.imread('/home/yc/Pictures/cat.jpg',0)
  #得到计算灰度直方图的值
  xy=xygray(img)  

  #画出灰度直方图
  x_range=range(256)
  plt.plot(x_range,xy,"r",linewidth=2,c='black')
  #设置坐标轴的范围
  y_maxValue=np.max(xy)
  plt.axis([0,255,0,y_maxValue])
  #设置坐标轴的标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  plt.show()

def xygray(img):
  #得到高和宽
  rows,cols=img.shape
  #存储灰度直方图
  xy=np.zeros([256],np.uint64)
  for r in range(rows):
    for c in range(cols):
      xy[img[r][c]] += 1
  #返回一维ndarry
  return xy

main()

效果如下

灰度直方图

以上就是本文的全部内容,与一起学习opencv的同学共勉,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python中logger日志模块详解

    Python中logger日志模块详解

    这篇文章主要介绍了Python中logger日志模块详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

    python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

    这篇文章主要为大家详细介绍了python 3利用Dlib 19.7实现摄像头人脸检测特征点标定,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • Python学习入门之区块链详解

    Python学习入门之区块链详解

    区块链的基础概念很简单:一个分布式数据库,存储一个不断加长的 list,list 中包含着许多有序的记录。下面这篇文章主要给大家介绍了关于Python学习入门之区块链的相关资料,文中通过示例代码介绍的非常详细,需要的朋友们下面来一起看看吧。
    2017-07-07
  • 使用Python结合Tkinter和PyAutoGUI开发精确截图工具

    使用Python结合Tkinter和PyAutoGUI开发精确截图工具

    在日常工作中,截图是一个非常常见的需求,虽然 Windows 自带截图工具,但有时我们需要更精确的截图方式,比如选取特定区域、快速保存截图并进行预览,本篇博客将介绍一个使用 Python 结合 Tkinter 和 PyAutoGUI 开发的精确截图工具,需要的朋友可以参考下
    2025-03-03
  • pytorch中tensor的合并与截取方法

    pytorch中tensor的合并与截取方法

    今天小编就为大家分享一篇pytorch中tensor的合并与截取方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python中异常处理的5个最佳实践分享

    Python中异常处理的5个最佳实践分享

    异常处理是编写健壮可靠的 Python 代码的一个基本方面,这篇文章为大家整理了Python中异常处理的5个最佳实践,文中的示例代码讲解详细,希望对大家有所帮助
    2024-01-01
  • 详解Python字典的运算

    详解Python字典的运算

    这篇文章主要为大家介绍了Python字典的运算 ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Python简单的GUI程序示例详解

    Python简单的GUI程序示例详解

    这篇文章主要为大家详细介绍了Python简单的GUI程序示例,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02
  • Python中__init__和__new__的区别详解

    Python中__init__和__new__的区别详解

    这篇文章主要介绍了Python中__init__和__new__的区别详解,并着重说明了__new__的作用及什么情况下使用__new__,需要的朋友可以参考下
    2014-07-07
  • python3.8中关于sklearn问题(win10)

    python3.8中关于sklearn问题(win10)

    这篇文章主要介绍了python3.8中关于sklearn问题(win10),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06

最新评论