PyTorch基本数据类型(一)

 更新时间:2019年05月22日 09:03:07   作者:Liam Coder  
这篇文章主要为大家详细介绍了PyTorch基本数据类型,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

PyTorch基础入门一:PyTorch基本数据类型

1)Tensor(张量)

Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一个多维矩阵,并有矩阵相关的运算操作。在使用上和numpy是对应的,它和numpy唯一的不同就是,pytorch可以在GPU上运行,而numpy不可以。所以,我们也可以使用Tensor来代替numpy的使用。当然,二者也可以相互转换。

Tensor的基本数据类型有五种:

  • 32位浮点型:torch.FloatTensor。pyorch.Tensor()默认的就是这种类型。
  • 64位整型:torch.LongTensor。
  • 32位整型:torch.IntTensor。
  • 16位整型:torch.ShortTensor。
  • 64位浮点型:torch.DoubleTensor。

那么如何定义Tensor张量呢?其实定义的方式和numpy一样,直接传入相应的矩阵即可即可。下面就定义了一个三行两列的矩阵:

import torch
# 导包
 
a = torch.Tensor([[1, 2], [3, 4], [5, 6]])
print(a)

不过在项目之中,更多的做法是以特殊值或者随机值初始化一个矩阵,就像下面这样:

import torch
 
# 定义一个3行2列的全为0的矩阵
b = torch.zeros((3, 2))
 
# 定义一个3行2列的随机值矩阵
c = torch.randn((3, 2))
 
# 定义一个3行2列全为1的矩阵
d = torch.ones((3, 2))
 
print(b)
print(c)
print(d)

Tensor和numpy.ndarray之间还可以相互转换,其方式如下:

  • Numpy转化为Tensor:torch.from_numpy(numpy矩阵)
  • Tensor转化为numpy:Tensor矩阵.numpy()

范例如下:

import torch
import numpy as np
 
# 定义一个3行2列的全为0的矩阵
b = torch.randn((3, 2))
 
# tensor转化为numpy
numpy_b = b.numpy()
print(numpy_b)
 
# numpy转化为tensor
numpy_e = np.array([[1, 2], [3, 4], [5, 6]])
torch_e = torch.from_numpy(numpy_e)
 
print(numpy_e)
print(torch_e)

之前说过,numpy与Tensor最大的区别就是在对GPU的支持上。Tensor只需要调用cuda()函数就可以将其转化为能在GPU上运行的类型。

我们可以通过torch.cuda.is_available()函数来判断当前的环境是否支持GPU,如果支持,则返回True。所以,为保险起见,在项目代码中一般采取“先判断,后使用”的策略来保证代码的正常运行,其基本结构如下:

import torch
 
# 定义一个3行2列的全为0的矩阵
tmp = torch.randn((3, 2))
 
# 如果支持GPU,则定义为GPU类型
if torch.cuda.is_available():
  inputs = tmp.cuda()
# 否则,定义为一般的Tensor类型
else:
  inputs = tmp

2)Variable(变量)

Pytorch里面的Variable类型数据功能更加强大,相当于是在Tensor外层套了一个壳子,这个壳子赋予了前向传播,反向传播,自动求导等功能,在计算图的构建中起的很重要的作用。Variable的结构图如下:

其中最重要的两个属性是:data和grad。Data表示该变量保存的实际数据,通过该属性可以访问到它所保存的原始张量类型,而关于该 variable(变量)的梯度会被累计到.grad 上去。

在使用Variable的时候需要从torch.autograd中导入。下面通过一个例子来看一下它自动求导的过程:

import torch
from torch.autograd import Variable
 
# 定义三个Variable变量
x = Variable(torch.Tensor([1, 2, 3]), requires_grad=True)
w = Variable(torch.Tensor([2, 3, 4]), requires_grad=True)
b = Variable(torch.Tensor([3, 4, 5]), requires_grad=True)
 
# 构建计算图,公式为:y = w * x^2 + b
y = w * x * x + b
 
# 自动求导,计算梯度
y.backward(torch.Tensor([1, 1, 1]))
 
print(x.grad)
print(w.grad)
print(b.grad)

上述代码的计算图为y = w * x^2 + b。对x, w, b分别求偏导为:x.grad = 2wx,w.grad=x^2,b.grad=1。代值检验可得计算结果是正确的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python实现井字棋小游戏

    Python实现井字棋小游戏

    这篇文章主要为大家详细介绍了Python实现井字棋小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • Python使用Pandas库实现MySQL数据库读写

    Python使用Pandas库实现MySQL数据库读写

    本次分享将介绍如何在Python中使用Pandas库实现MySQL数据库的读写,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Python变量命名规范的总结

    Python变量命名规范的总结

    在Python编程中,变量命名规范对于编写优雅和可维护的代码至关重要,本文主要介绍了Python变量命名规范的总结,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • Python使用Pandas读写Excel实例解析

    Python使用Pandas读写Excel实例解析

    这篇文章主要介绍了Python使用Pandas读写Excel实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • 使用Python的matplotlib库绘制柱状图

    使用Python的matplotlib库绘制柱状图

    这篇文章主要介绍了使用Python的matplotlib库绘制柱状图,Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表,可根据数据集自行定义x,y轴,绘制图形,需要的朋友可以参考下
    2023-07-07
  • python画图时给图中的点加标签和plt.text的使用

    python画图时给图中的点加标签和plt.text的使用

    这篇文章主要介绍了python画图时给图中的点加标签和plt.text的使用,利用matplotlib模块画各城市2019-nCoV疫情确诊人数和节前流入人口数的图的时候遇到了要给图中的点加上标签示意,需要的朋友可以参考一下
    2022-03-03
  • 解决Pycharm输入法无法切换中英文问题

    解决Pycharm输入法无法切换中英文问题

    这篇文章主要介绍了解决Pycharm输入法无法切换中英文问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python cookbook(数据结构与算法)实现优先级队列的方法示例

    Python cookbook(数据结构与算法)实现优先级队列的方法示例

    这篇文章主要介绍了Python cookbook(数据结构与算法)实现优先级队列的方法,结合实例形式分析了Python中基于给定优先级进行队列元素排序的相关操作技巧,需要的朋友可以参考下
    2018-02-02
  • Python3 requests文件下载 期间显示文件信息和下载进度代码实例

    Python3 requests文件下载 期间显示文件信息和下载进度代码实例

    这篇文章主要介绍了Python3 requests文件下载 期间显示文件信息和下载进度代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Centos7 下安装最新的python3.8

    Centos7 下安装最新的python3.8

    Python 3.8是Python语言的最新版本,它适合用于编写脚本、自动化以及机器学习和Web开发等各种任务。这篇文章主要介绍了Centos7 下安装最新的python3.8,需要的朋友可以参考下
    2019-10-10

最新评论