python pandas时序处理相关功能详解

 更新时间:2019年07月03日 09:00:04   作者:ledao  
这篇文章主要介绍了python pandas时序处理相关功能详解的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

创建时间序列

函数pd.date_range()

根据指定的范围,生成时间序列DatetimeIndex,每隔元素的类型为Timestamp。该函数应用较多。

ts = pd.date_range('2017-09-01', periods=10, freq='d', normalize=False)
ts

输出为:

DatetimeIndex(['2017-09-01', '2017-09-02', '2017-09-03', '2017-09-04',
'2017-09-05', '2017-09-06', '2017-09-07', '2017-09-08',
'2017-09-09', '2017-09-10'],
dtype='datetime64[ns]', freq='D'

主要的入参解析:

  • start: 开始时刻,可以是字符串或者datetime类型的值。默认None。
  • end: 结束时刻,可以是字符串或者datetime类型的值,如果指定了长度,即periods,则可不设置。默认None。
  • periods: 时序的长度,整型类型。如果有end,可不设置。默认None。
  • freq: 时序生成的频率,即每隔多少时刻生成一个时序点。字符串类型或者DateOffset类型。默认'D',即天粒度,见上述代码输出。
  • tz: 时区,字符串类型。默认None。
  • normalize: bool类型,没用过,不知道干啥的。
  • name: 设置时序的名称,字符串类型,默认None。
  • closed: 是否包含两边的值。默认None,即两边都保留。

其中,freq的取值可以为如下的符号表示间隔,可以结合符号和数字,如'3d',表示每隔三天记录一个时间点。大小写都可以。

B business day frequency
C custom business day frequency (experimental)
D calendar day frequency
W weekly frequency
M month end frequency
SM semi-month end frequency (15th and end of month)
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
SMS semi-month start frequency (1st and 15th)
BMS business month start frequency
CBMS custom business month start frequency
Q quarter end frequency
BQ business quarter endfrequency
QS quarter start frequency
BQS business quarter start frequency
A year end frequency
BA business year end frequency
AS year start frequency
BAS business year start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds

字符串转换为时间戳

pd.to_datetime() 函数可以将表示时间的字符串转换位TimeStamp。

pd.to_datetime('2017-09-01')

输出为:

Timestamp('2017-09-01 00:00:00')

常用的参数:

format: 用来设置字符串的格式,默认如上所示。

时间戳的加减
有时候需要将时间进行增减,可以使用类型:DateOffset。

pd.to_datetime('2017-09-01') + pd.DateOffset(days=10) 

输出为:

Timestamp('2017-09-11 00:00:00')

DateOffset常用的参数:

  • months,设置月。
  • days,设置天。
  • years,设置年。
  • hours,设置小时。
  • minutes,设置分钟。
  • seconds,设置秒。

以上可以同时设置,组合使用。

pd.to_datetime('2017-09-01') + pd.DateOffset(seconds=10, days = 10)

输出为:

Timestamp('2017-09-11 00:00:10')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python matplotlib实现双Y轴的实例

    python matplotlib实现双Y轴的实例

    今天小编就为大家分享一篇python matplotlib实现双Y轴的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Python爬虫必备技巧详细总结

    Python爬虫必备技巧详细总结

    本篇文章介绍了我在爬虫过程中总结的几个必备技巧,都是经过实验的,通读本篇对大家的学习或工作具有一定的价值,需要的朋友可以参考下
    2021-10-10
  • Django1.7+python 2.78+pycharm配置mysql数据库教程

    Django1.7+python 2.78+pycharm配置mysql数据库教程

    原本感觉在Django1.7+python 2.78+pycharm环境下配置mysql数据库是件很容易的事情,结果具体操作的时候才发现,问题还是挺多的,这里记录一下最终的配置结果,给需要的小伙伴参考下吧
    2014-11-11
  • python 如何利用argparse解析命令行参数

    python 如何利用argparse解析命令行参数

    这篇文章主要介绍了python 利用argparse解析命令行参数的步骤,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-09-09
  • Python绘制折线图可视化神器pyecharts案例

    Python绘制折线图可视化神器pyecharts案例

    这篇文章主要介绍了Python绘制折线图可视化神器pyecharts,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • Python Pandas处理csv文件常用示例

    Python Pandas处理csv文件常用示例

    Pandas是一个非常强大的数据操作python包,支持各种数据格式,包括CSV文件,本文就来介绍一下Python Pandas处理csv文件常用示例,感兴趣的可以了解一下
    2023-12-12
  • 仅用50行Python代码实现一个简单的代理服务器

    仅用50行Python代码实现一个简单的代理服务器

    这篇文章主要介绍了仅用50行Python代码实现一个简单的代理服务器,利用最简单的client->proxy->forward原理在socket模块下编写,需要的朋友可以参考下
    2015-04-04
  • Python格式化压缩后的JS文件的方法

    Python格式化压缩后的JS文件的方法

    这篇文章主要介绍了Python格式化压缩后的JS文件的方法,实例分析了Python格式化文件的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • python中15种3D绘图函数总结

    python中15种3D绘图函数总结

    这篇文章主要为大家详细介绍了python中15种3D绘图函数的用法,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-09-09
  • python实现决策树ID3算法的示例代码

    python实现决策树ID3算法的示例代码

    这篇文章主要介绍了python实现决策树ID3算法的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-05-05

最新评论