基于sklearn实现Bagging算法(python)
更新时间:2021年06月16日 15:39:36 作者:little_yan_yan
这篇文章主要为大家详细介绍了基于sklearn实现Bagging算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。
实现Bagging算法的代码如下:
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
content=list(map(float,content))
if len(content)!=0:
data.append(content)
traffic_feature.append(content[0:6])//存放数据集的特征
traffic_target.append(content[-1])//存放数据集的标签
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature) # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature) # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)
# n_estimators=500:生成500个决策树
clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))
运行结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】
这篇文章主要介绍了Python图像处理之直线和曲线的拟合与绘制,结合实例形式分析了Python曲线拟合相关函数curve_fit()的使用技巧,需要的朋友可以参考下2018-12-12
matplotlib 画动态图以及plt.ion()和plt.ioff()的使用详解
这篇文章主要介绍了matplotlib 画动态图以及plt.ion()和plt.ioff()的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2021-01-01
Python使用SQLAlchemy操作Mysql数据库的操作示例
SQLAlchemy是Python的SQL工具包和对象关系映射(ORM)库,它提供了全套的企业级持久性模型,用于高效、灵活且优雅地与关系型数据库进行交互,这篇文章主要介绍了Python使用SQLAlchemy操作Mysql数据库,需要的朋友可以参考下2024-08-08


最新评论