Pytorch实现GoogLeNet的方法

 更新时间:2019年08月18日 15:23:46   作者:winycg  
今天小编就为大家分享一篇Pytorch实现GoogLeNet的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍,但是计算量是AlexNet的4倍,原因就是它采用很有效的Inception模块,并且没有全连接层。

最重要的创新点就在于使用inception模块,通过使用不同维度的卷积提取不同尺度的特征图。左图是最初的Inception模块,右图是使用的1×1得卷积对左图的改进,降低了输入的特征图维度,同时降低了网络的参数量和计算复杂度,称为inception V1。

GoogleNet在架构设计上为保持低层为传统卷积方式不变,只在较高的层开始用Inception模块。

inception V2中将5x5的卷积改为2个3x3的卷积,扩大了感受野,原来是5x5,现在是6x6。Pytorch实现GoogLeNet(inception V2):

'''GoogLeNet with PyTorch.'''
import torch
import torch.nn as nn
import torch.nn.functional as F

# 编写卷积+bn+relu模块
class BasicConv2d(nn.Module):
  def __init__(self, in_channels, out_channals, **kwargs):
    super(BasicConv2d, self).__init__()
    self.conv = nn.Conv2d(in_channels, out_channals, **kwargs)
    self.bn = nn.BatchNorm2d(out_channals)

  def forward(self, x):
    x = self.conv(x)
    x = self.bn(x)
    return F.relu(x)

# 编写Inception模块
class Inception(nn.Module):
  def __init__(self, in_planes,
         n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
    super(Inception, self).__init__()
    # 1x1 conv branch
    self.b1 = BasicConv2d(in_planes, n1x1, kernel_size=1)

    # 1x1 conv -> 3x3 conv branch
    self.b2_1x1_a = BasicConv2d(in_planes, n3x3red, 
                  kernel_size=1)
    self.b2_3x3_b = BasicConv2d(n3x3red, n3x3, 
                  kernel_size=3, padding=1)

    # 1x1 conv -> 3x3 conv -> 3x3 conv branch
    self.b3_1x1_a = BasicConv2d(in_planes, n5x5red, 
                  kernel_size=1)
    self.b3_3x3_b = BasicConv2d(n5x5red, n5x5, 
                  kernel_size=3, padding=1)
    self.b3_3x3_c = BasicConv2d(n5x5, n5x5, 
                  kernel_size=3, padding=1)

    # 3x3 pool -> 1x1 conv branch
    self.b4_pool = nn.MaxPool2d(3, stride=1, padding=1)
    self.b4_1x1 = BasicConv2d(in_planes, pool_planes, 
                 kernel_size=1)

  def forward(self, x):
    y1 = self.b1(x)
    y2 = self.b2_3x3_b(self.b2_1x1_a(x))
    y3 = self.b3_3x3_c(self.b3_3x3_b(self.b3_1x1_a(x)))
    y4 = self.b4_1x1(self.b4_pool(x))
    # y的维度为[batch_size, out_channels, C_out,L_out]
    # 合并不同卷积下的特征图
    return torch.cat([y1, y2, y3, y4], 1)


class GoogLeNet(nn.Module):
  def __init__(self):
    super(GoogLeNet, self).__init__()
    self.pre_layers = BasicConv2d(3, 192, 
                   kernel_size=3, padding=1)

    self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
    self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

    self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

    self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
    self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
    self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
    self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
    self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

    self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
    self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

    self.avgpool = nn.AvgPool2d(8, stride=1)
    self.linear = nn.Linear(1024, 10)

  def forward(self, x):
    out = self.pre_layers(x)
    out = self.a3(out)
    out = self.b3(out)
    out = self.maxpool(out)
    out = self.a4(out)
    out = self.b4(out)
    out = self.c4(out)
    out = self.d4(out)
    out = self.e4(out)
    out = self.maxpool(out)
    out = self.a5(out)
    out = self.b5(out)
    out = self.avgpool(out)
    out = out.view(out.size(0), -1)
    out = self.linear(out)
    return out


def test():
  net = GoogLeNet()
  x = torch.randn(1,3,32,32)
  y = net(x)
  print(y.size())

test()

以上这篇Pytorch实现GoogLeNet的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python如何把Spark数据写入ElasticSearch

    Python如何把Spark数据写入ElasticSearch

    这篇文章主要介绍了Python如何把Spark数据写入ElasticSearch,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04
  • python实现端口转发器的方法

    python实现端口转发器的方法

    这篇文章主要介绍了python实现端口转发器的方法,涉及Python实现端口转发的技巧,支持TCP和UDP协议,需要的朋友可以参考下
    2015-03-03
  • 使用python修改文件并立即写回到原始位置操作(inplace读写)

    使用python修改文件并立即写回到原始位置操作(inplace读写)

    这篇文章主要介绍了使用python修改文件并立即写回到原始位置操作(inplace读写),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Pytorch创建张量的四种方法

    Pytorch创建张量的四种方法

    Pytorch创建张量的4种方法主要有:torch.Tensor()、torch.tensor()、torch.as_tensor()、torch.from_numpy(),本文通过实例代码介绍Pytorch创建张量的四种方法,需要的朋友可以参考下
    2023-05-05
  • Python supervisor强大的进程管理工具的使用

    Python supervisor强大的进程管理工具的使用

    这篇文章主要介绍了Python supervisor强大的进程管理工具的使用,本文主要跟大家分享在类unix操作系统下supervisor的使用以及一些关于进程的知识,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • Ubuntu下安装卸载python3.8的过程

    Ubuntu下安装卸载python3.8的过程

    这篇文章主要介绍了Ubuntu下python3.8的安装与卸载,本文以在 Ubuntu 16.04 中安装为例,方法同样适用于 Ubuntu 18.04,需要的朋友可以参考下
    2021-09-09
  • 利用Python快速搭建Markdown笔记发布系统

    利用Python快速搭建Markdown笔记发布系统

    这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统,感兴趣的小伙伴可以参考下
    2025-04-04
  • Python写安全小工具之TCP全连接端口扫描器

    Python写安全小工具之TCP全连接端口扫描器

    这篇文章主要介绍了Python写安全小工具之TCP全连接端口扫描器,文章通过TCP connect来实现一个TCP全连接端口扫描器。具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • 520必备!这些Python表白代码祝你脱单成功

    520必备!这些Python表白代码祝你脱单成功

    不会还有程序猿没有女朋友吧?没关系,今天特地为大家整理了这些Python花式表白代码,你就放心大胆的去吧,需要的朋友可以参考下
    2021-05-05
  • LyScript实现指令查询功能的示例代码

    LyScript实现指令查询功能的示例代码

    对LyScript自动化插件进行二次封装,可以实现从内存中读入目标进程解码后的机器码。所以本文为大家介绍了如何实现LyScript指令查询功能,需要的可以参考一下
    2022-09-09

最新评论