opencv实现简单人脸识别

 更新时间:2021年02月19日 15:19:23   作者:Lin_QC  
这篇文章主要为大家详细介绍了opencv实现简单人脸识别,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别

参考了网上许多资料 

假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。

项目代码结构:

dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成

haarcascade_frontalface_alt.xml  、 haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度更快

data_gen.py:生成我们所需的数据

trainer.py: 训练数据集

train.yml: 由train.py生成的人脸识别模型,供后面的人脸识别使用

recognize.py:视频中的人脸识别

data_gen.py

连续拍20张照片当作训练数据,每个人建立一组数据

import cv2
 
detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
cap = cv2.VideoCapture(0)
sampleNum = 0
Id = input('enter your id: ')
 
while True:
 ret, img = cap.read()
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
 
 # incrementing sample number
 sampleNum = sampleNum + 1
 # saving the captured face in the dataset folder
 cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) #
 
 cv2.imshow('frame', img)
 # wait for 100 miliseconds
 if cv2.waitKey(100) & 0xFF == ord('q'):
 break
 # break if the sample number is morethan 20
 elif sampleNum > 20:
 break
 
cap.release()
cv2.destroyAllWindows()

train.py

训练数据

import cv2
import os
import numpy as np
from PIL import Image
 
# recognizer = cv2.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()
 
 
def get_images_and_labels(path):
 image_paths = [os.path.join(path, f) for f in os.listdir(path)]
 face_samples = []
 ids = []
 
 for image_path in image_paths:
 image = Image.open(image_path).convert('L')
 image_np = np.array(image, 'uint8')
 if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
 continue
 image_id = int(os.path.split(image_path)[-1].split(".")[1])
 faces = detector.detectMultiScale(image_np)
 for (x, y, w, h) in faces:
 face_samples.append(image_np[y:y + h, x:x + w])
 ids.append(image_id)
 
 return face_samples, ids
 
 
Faces, Ids = get_images_and_labels('dataSet')
recognizer.train(Faces, np.array(Ids))
recognizer.save('trainner.yml')

recognize.py

下面就是根据训练好的模型进行人脸识别,根据之前生成数据的编号,可以填入相对应的人名,例如以下示例我训练了三组人的数据

import cv2
import numpy as np
 
recognizer = cv2.face.LBPHFaceRecognizer_create()
# recognizer = cv2.createLBPHFaceRecognizer() # in OpenCV 2
recognizer.read('/Users/qiuchenglin/PycharmProjects/face_recognize/trainner.yml')
# recognizer.load('trainner/trainner.yml') # in OpenCV 2
 
cascade_path = "/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)
cam = cv2.VideoCapture(0)
# font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 1, 1) # in OpenCV 2
font = cv2.FONT_HERSHEY_SIMPLEX
 
while True:
 ret, im = cam.read()
 gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray, 1.2, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(im, (x - 50, y - 50), (x + w + 50, y + h + 50), (225, 0, 0), 2)
 img_id, conf = recognizer.predict(gray[y:y + h, x:x + w])
 if conf > 50:
 if img_id == 1:
 img_id = 'liuzb'
 elif img_id == 2:
 img_id = 'linqc'
 elif img_id == 3:
 img_id = 'keaibao'
 else:
 img_id = "Unknown"
 # cv2.cv.PutText(cv2.cv.fromarray(im), str(Id), (x, y + h), font, 255)
 cv2.putText(im, str(img_id), (x, y), font, 1, (0, 255, 0), 1)
 cv2.imshow('im', im)
 if cv2.waitKey(10) & 0xFF == ord('q'):
 break
 
cam.release()
cv2.destroyAllWindows() 

简单的一个人脸识别就完成了,只能说准确率没有非常高。

之后想办法进行提高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python中函数的基本定义与调用及内置函数详解

    Python中函数的基本定义与调用及内置函数详解

    这篇文章主要给大家介绍了关于Python中函数的基本定义与调用及内置函数的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-05-05
  • 详细介绍Scrapy shell的使用教程

    详细介绍Scrapy shell的使用教程

    Scrapy shell是一个非常有用的工具,可以帮助开发者快速地测试和调试Scrapy的爬虫代码,这篇文章主要介绍了详细介绍Scrapy shell的使用,需要的朋友可以参考下
    2023-05-05
  • Python实现自动发送测试报告邮件的示例代码

    Python实现自动发送测试报告邮件的示例代码

    SMTP也就是简单邮件传输协议,是一种提供可靠且有效电子邮件传输的协议,python的smtplib模块就提供了一种很方便的途径发送电子邮件,它对smtp协议进行了简单的封装,下面就来和大家简单聊聊吧
    2023-07-07
  • pytest官方文档解读之安装和使用插件的方法

    pytest官方文档解读之安装和使用插件的方法

    这篇文章主要介绍了pytest官方文档解读之安装和使用插件的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-09-09
  • python 实现关联规则算法Apriori的示例

    python 实现关联规则算法Apriori的示例

    这篇文章主要介绍了python 实现关联规则算法Apriori的示例,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-09-09
  • Python可视化Tkinter进阶grid布局详情

    Python可视化Tkinter进阶grid布局详情

    这篇文章主要介绍了Python可视化Tkinter进阶grid布局详情,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • python实现进度条和系统通知的示例详解

    python实现进度条和系统通知的示例详解

    这篇文章主要和大家分享两个有意思的Python小工具,可以优雅地实现进度条和系统通知,文中的示例代码简洁易懂,有需要的小伙伴快也跟随小编一起学习一下
    2023-11-11
  • python实现公司年会抽奖程序

    python实现公司年会抽奖程序

    这篇文章主要为大家详细介绍了python实现公司年会抽奖程序,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • 深入探索Django中间件的应用场景

    深入探索Django中间件的应用场景

    Django中间件是一种可插拔的应用程序组件,可在请求和响应处理过程中修改Django的行为。中间件可用于处理请求、响应、异常等,还可用于实现身份验证、缓存、性能监控等常用功能。通过深入探索中间件的应用场景,可以提高Django应用程序的可扩展性和灵活性
    2023-05-05
  • 在Pycharm中使用GitHub的方法步骤

    在Pycharm中使用GitHub的方法步骤

    这篇文章主要介绍了在Pycharm中使用GitHub的方法步骤,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-06-06

最新评论