PyTorch预训练的实现

 更新时间:2019年09月18日 11:12:51   作者:算法学习者  
这篇文章主要介绍了PyTorch预训练的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢。各种设计直接简洁,方便研究,比tensorflow的臃肿好多了。今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理。

直接加载预训练模型

如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型:

my_resnet = MyResNet(*args, **kwargs)
my_resnet.load_state_dict(torch.load("my_resnet.pth"))

当然这样的加载方法是基于PyTorch推荐的存储模型的方法:

torch.save(my_resnet.state_dict(), "my_resnet.pth")

还有第二种加载方法:

my_resnet = torch.load("my_resnet.pth")

加载部分预训练模型

其实大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152'])
model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

因为需要剔除原模型中不匹配的键,也就是层的名字,所以我们的新模型改变了的层需要和原模型对应层的名字不一样,比如:resnet最后一层的名字是fc(PyTorch中),那么我们修改过的resnet的最后一层就不能取这个名字,可以叫fc_

微改基础模型预训练

对于改动比较大的模型,我们可能需要自己实现一下再加载别人的预训练参数。但是,对于一些基本模型PyTorch中已经有了,而且我只想进行一些小的改动那么怎么办呢?难道我又去实现一遍吗?当然不是。

我们首先看看怎么进行微改模型。

微改基础模型

PyTorch中的torchvision里已经有很多常用的模型了,可以直接调用:

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()
densenet = models.densenet_161()

但是对于我们的任务而言有些层并不是直接能用,需要我们微微改一下,比如,resnet最后的全连接层是分1000类,而我们只有21类;又比如,resnet第一层卷积接收的通道是3, 我们可能输入图片的通道是4,那么可以通过以下方法修改:

resnet.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)
resnet.fc = nn.Linear(2048, 21)

简单预训练

模型已经改完了,接下来我们就进行简单预训练吧。
我们先从torchvision中调用基本模型,加载预训练模型,然后,重点来了,将其中的层直接替换为我们需要的层即可:

resnet = torchvision.models.resnet152(pretrained=True)
# 原本为1000类,改为10类
resnet.fc = torch.nn.Linear(2048, 10)

其中使用了pretrained参数,会直接加载预训练模型,内部实现和前文提到的加载预训练的方法一样。因为是先加载的预训练参数,相当于模型中已经有参数了,所以替换掉最后一层即可。OK!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python tkinter 树形列表控件(Treeview)的使用方法

    Python tkinter 树形列表控件(Treeview)的使用方法

    这篇文章主要介绍了Python tkinter 树形列表控件(Treeview)的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python实现按行分割文件

    python实现按行分割文件

    这篇文章主要为大家详细介绍了python如何实现按行分割文件,python按指定行数分割文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-07-07
  • python经典百题之static定义静态变量的三种方法

    python经典百题之static定义静态变量的三种方法

    日常脚本编写过程中时常会用到python的静态方法、实例方法、类方法,下面这篇文章主要给大家介绍了关于python经典百题之static定义静态变量的三种方法,需要的朋友可以参考下
    2024-09-09
  • exe反编译为.py文件的方法

    exe反编译为.py文件的方法

    本文主要介绍了exe反编译为.py文件的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • uwsgi+nginx部署Django项目操作示例

    uwsgi+nginx部署Django项目操作示例

    这篇文章主要介绍了uwsgi+nginx部署Django项目操作,结合实例形式简单介绍了uwsgi的概念、原理、安装、项目创建、配置、调试运行等相关操作技巧,需要的朋友可以参考下
    2018-12-12
  • Python随机数种子(random seed)的使用

    Python随机数种子(random seed)的使用

    在科学技术和机器学习等其他算法相关任务中,我们经常需要用到随机数,本文就详细的介绍一下Python随机数种子,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • Python+matplotlib调用随机函数生成变化图形

    Python+matplotlib调用随机函数生成变化图形

    这篇文章主要介绍了如何在Python中利用随机函数生成变化的图形,文中的示例代码讲解详细,对我们学习有一定吧参考价值,需要的可以了解一下
    2022-04-04
  • python自定义函数实现最大值的输出方法

    python自定义函数实现最大值的输出方法

    今天小编就为大家分享一篇python自定义函数实现最大值的输出方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 详解django中自定义标签和过滤器

    详解django中自定义标签和过滤器

    本篇文章主要介绍了django中自定义标签和过滤器,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-07-07
  • Python利用Xpath选择器爬取京东网商品信息

    Python利用Xpath选择器爬取京东网商品信息

    这篇文章主要介绍了Python利用Xpath选择器爬取京东网商品信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06

最新评论