结合OpenCV与TensorFlow进行人脸识别的实现

 更新时间:2019年10月10日 15:43:38   作者:奋斗小鹏  
这篇文章主要介绍了结合OpenCV与TensorFlow进行人脸识别的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

作为新手来说,这是一个最简单的人脸识别模型,难度不大,代码量也不算多,下面就逐一来讲解,数据集的准备就不多说了,因人而异。

一. 获取数据集的所有路径

利用os模块来生成一个包含所有数据路径的list

def my_face():
  path = os.listdir("./my_faces")
  image_path = [os.path.join("./my_faces/",img) for img in path]
  return image_path
def other_face():
  path = os.listdir("./other_faces")
  image_path = [os.path.join("./other_faces/",img) for img in path]
  return image_path
image_path = my_face().__add__(other_face())  #将两个list合并成为一个list

二. 构造标签

标签的构造较为简单,1表示本人,0表示其他人。

label_my= [1 for i in my_face()]
 label_other = [0 for i in other_face()]
 label = label_my.__add__(label_other)       #合并两个list

三.构造数据集

利用tf.data.Dataset.from_tensor_slices()构造数据集,

def preprocess(x,y):
  x = tf.io.read_file(x)  #读取数据
  x = tf.image.decode_jpeg(x,channels=3) #解码成jpg格式的数据
  x = tf.cast(x,tf.float32) / 255.0   #归一化
  y = tf.convert_to_tensor(y)				#转成tensor
  return x,y

data = tf.data.Dataset.from_tensor_slices((image_path,label))
data_loader = data.repeat().shuffle(5000).map(preprocess).batch(128).prefetch(1)

四.构造模型

class CNN_WORK(Model):
  def __init__(self):
    super(CNN_WORK,self).__init__()
    self.conv1 = layers.Conv2D(32,kernel_size=5,activation=tf.nn.relu)
    self.maxpool1 = layers.MaxPool2D(2,strides=2)
    
    self.conv2 = layers.Conv2D(64,kernel_size=3,activation=tf.nn.relu)
    self.maxpool2 = layers.MaxPool2D(2,strides=2)
    
    self.flatten = layers.Flatten()
    self.fc1 = layers.Dense(1024)
    self.dropout = layers.Dropout(rate=0.5)
    self.out = layers.Dense(2)
  
  def call(self,x,is_training=False):
    x = self.conv1(x)
    x = self.maxpool1(x)
    x = self.conv2(x)
    x = self.maxpool2(x)
    
    x = self.flatten(x)
    x = self.fc1(x)
    x = self.dropout(x,training=is_training)
    x = self.out(x)
  
    
    if not is_training:
      x = tf.nn.softmax(x)
    return x
model = CNN_WORK()

在这里插入图片描述

五.定义损失函数,精度函数,优化函数

def cross_entropy_loss(x,y):
  y = tf.cast(y,tf.int64)
  loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=x)
  return tf.reduce_mean(loss)

def accuracy(y_pred,y_true):
  correct_pred = tf.equal(tf.argmax(y_pred,1),tf.cast(y_true,tf.int64))
  return tf.reduce_mean(tf.cast(correct_pred,tf.float32),axis=-1)
optimizer = tf.optimizers.SGD(0.002)  

六.开始跑步我们的模型

def run_optimizer(x,y):
  with tf.GradientTape() as g:
    pred = model(x,is_training=True)
    loss = cross_entropy_loss(pred,y)
  training_variabel = model.trainable_variables
  gradient = g.gradient(loss,training_variabel)
  optimizer.apply_gradients(zip(gradient,training_variabel))
model.save_weights("face_weight") #保存模型  

最后跑的准确率还是挺高的。

在这里插入图片描述

七.openCV登场

最后利用OpenCV的人脸检测模块,将检测到的人脸送入到我们训练好了的模型中进行预测根据预测的结果进行标识。

cap = cv2.VideoCapture(0)

face_cascade = cv2.CascadeClassifier('C:\\Users\Wuhuipeng\AppData\Local\Programs\Python\Python36\Lib\site-packages\cv2\data/haarcascade_frontalface_alt.xml')

while True:
  ret,frame = cap.read()

  gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

  faces = face_cascade.detectMultiScale(gray,scaleFactor=1.2,minNeighbors=5,minSize=(5,5))

  for (x,y,z,t) in faces:
    img = frame[x:x+z,y:y+t]
    try:
      img = cv2.resize(img,(64,64))
      img = tf.cast(img,tf.float32) / 255.0
      img = tf.reshape(img,[-1,64,64,3])
    
      pred = model(img)
      pred = tf.argmax(pred,axis=1).numpy()
    except:
      pass
    if(pred[0]==1):
      cv2.putText(frame,"wuhuipeng",(x-10,y-10),cv2.FONT_HERSHEY_SIMPLEX,1.2,(255,255,0),2)
    
    cv2.rectangle(frame,(x,y),(x+z,y+t),(0,255,0),2)
  cv2.imshow('find faces',frame)
  if cv2.waitKey(1)&0xff ==ord('q'):
    break
cap.release()
cv2.destroyAllWindows()

完整代码地址github.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 浅谈keras保存模型中的save()和save_weights()区别

    浅谈keras保存模型中的save()和save_weights()区别

    这篇文章主要介绍了浅谈keras保存模型中的save()和save_weights()区别,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python爬虫智能翻页批量下载文件的实例详解

    python爬虫智能翻页批量下载文件的实例详解

    在本篇文章里小编给大家整理的是一篇关于python爬虫智能翻页批量下载文件的实例详解内容,有兴趣的朋友们可以学习下。
    2021-02-02
  • Flask 的路由Route详情

    Flask 的路由Route详情

    在上一篇Flask 入门Web 微框架Hello Flask中,我们用 Flask 框架写了一个 Hello Flask 应用程序,我们了解到 Flask 框架简洁高效、可以快速上手,接下来将对 Flask 框架的各项功能详细的介绍一下,本篇文章介绍的是 Flask 的路由(Route),需要的朋友可以参考一下
    2021-11-11
  • 4行Python代码生成图像验证码(2种)

    4行Python代码生成图像验证码(2种)

    这篇文章主要介绍了4行Python代码生成图像验证码(2种),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • Python 虚拟环境的价值和常用命令详解

    Python 虚拟环境的价值和常用命令详解

    在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如Scrapy、Beautiful Soup等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,今天给大家分享下Python 虚拟环境的价值和常用命令,感兴趣的朋友一起看看吧
    2022-05-05
  • Pandas中的空字符串(非缺失值)处理方式

    Pandas中的空字符串(非缺失值)处理方式

    这篇文章主要介绍了Pandas中的空字符串(非缺失值)处理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python 2.7.x 和 3.x 版本的重要区别小结

    Python 2.7.x 和 3.x 版本的重要区别小结

    这篇文章主要介绍了Python 2.7.x 和 3.x 版本的重要区别小结,需要的朋友可以参考下
    2014-11-11
  • python安装以及IDE的配置教程

    python安装以及IDE的配置教程

    Python在Linux、windows、Mac os等操作系统下都有相应的版本,不管在什么操作系统下,它都能够正常工作。除非使用平台相关功能,或特定平台的程序库,否则可以跨平台使用。今天我们主要来探讨下windows系统下的安装与配置
    2015-04-04
  • Python处理超大规模数据的4大方法详解

    Python处理超大规模数据的4大方法详解

    在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的 GB 级别的小数据堆,逐渐演变成 TB 级别的数据大山,所以本文我们就来看看Python处理超大规模数据的4大武器吧
    2025-05-05
  • Python 识别12306图片验证码物品的实现示例

    Python 识别12306图片验证码物品的实现示例

    这篇文章主要介绍了Python 识别12306图片验证码物品的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01

最新评论