pandas中遍历dataframe的每一个元素的实现

 更新时间:2019年10月23日 14:36:04   作者:TheoldmanPickgarbage  
这篇文章主要介绍了pandas中遍历dataframe的每一个元素的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python本地降级pip的方法步骤

    python本地降级pip的方法步骤

    高版本的pip在使用过程中会出现很多的不兼容问题,而且不留神很容易把pip给升级了,下面这篇文章主要给大家介绍了关于python本地降级pip的方法步骤,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2022-12-12
  • Python+树莓派+YOLO打造一款人工智能照相机

    Python+树莓派+YOLO打造一款人工智能照相机

    今天,我们将自己动手打造出一款基于深度学习的照相机,当小鸟出现在摄像头画面中时,它将能检测到小鸟并自动进行拍照
    2018-01-01
  • 如何运用sklearn做逻辑回归预测

    如何运用sklearn做逻辑回归预测

    这篇文章主要介绍了如何运用sklearn做逻辑回归预测问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Python pytest自动化测试库十个强大用法示例

    Python pytest自动化测试库十个强大用法示例

    本文将介绍Python的pytest库的10个强大用法,并提供相应的代码示例,帮助你更好地理解和应用单元测试,它提供了许多高级功能和便利的用法,能够让我们更轻松地编写和执行单元测试
    2024-01-01
  • 如何使用Flask-Migrate拓展数据库表结构

    如何使用Flask-Migrate拓展数据库表结构

    这篇文章主要介绍了如何使用Flask-Migrate拓展数据库表结构,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python全栈之列表数据类型详解

    Python全栈之列表数据类型详解

    这篇文章主要给大家介绍了关于Python全栈之列表数据类型的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-10-10
  • Python入门教程(四十一)Python的NumPy数组索引

    Python入门教程(四十一)Python的NumPy数组索引

    这篇文章主要介绍了Python入门教程(四十一)Python的NumPy数组索引,数组索引是指使用方括号([])来索引数组值,numpy提供了比常规的python序列更多的索引工具,除了按整数和切片索引之外,数组可以由整数数组索引、布尔索引及花式索引,需要的朋友可以参考下
    2023-05-05
  • 通过Py2exe将自己的python程序打包成.exe/.app的方法

    通过Py2exe将自己的python程序打包成.exe/.app的方法

    这篇文章主要介绍了通过Py2exe将自己的python程序打包成.exe/.app的方法,需要的朋友可以参考下
    2018-05-05
  • pytorch中.numpy()、.item()、.cpu()、.detach()以及.data的使用方法

    pytorch中.numpy()、.item()、.cpu()、.detach()以及.data的使用方法

    这篇文章主要给大家介绍了关于pytorch中.numpy()、.item()、.cpu()、.detach()以及.data的使用方法,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-08-08
  • python实现获取aws route53域名信息的方法

    python实现获取aws route53域名信息的方法

    最近由于工作原因接触到aws的服务,我需要实时获取所有的域名信息,用于对其进行扫描,因此写了一个自动化爬取脚本 给需要的人分享,对python获取aws route53域名信息相关知识感兴趣的朋友一起看看吧
    2023-12-12

最新评论