在 Jupyter 中重新导入特定的 Python 文件(场景分析)

 更新时间:2019年10月27日 14:33:15   作者:青南  
Jupyter 是数据分析领域非常有名的开发环境,使用 Jupyter 写数据分析相关的代码会大大节约开发时间。这篇文章主要介绍了在 Jupyter 中如何重新导入特定的 Python 文件,需要的朋友可以参考下

Jupyter 是数据分析领域非常有名的开发环境,使用 Jupyter 写数据分析相关的代码会大大节约开发时间。

设想这样一个场景:别的部门的同事传给你一个数据分析的模块,用于实现对数据的高级分析。模块里面有上百个函数。

如果直接写 Python 文件来调用数据分析模块,那么使用方法非常简单:

from analyze import FathersAnalyzer

data = [...]
father = FathersAnalyzer(data)
result = father.analyze()
print(f'分析结果为:{result}')

现在,你需要使用 Jupyter 来调用这个分析模块。你应该怎么在 Jupyter里面调用?

你可能会觉得,这还不简单吗?直接把这个模块的代码与 Jupyter Notebook 的 .ipynb 文件放在一起,然后在 Jupyter 里面像导入普通模块那样导入即可,如下图所示:

那么现在问题来了,如果我此时修改了 analyze.py 文件,会出现什么情况呢?

我们改一下看看,如下图所示。

重新运行这个 Cell 中的代码,代码中虽然有 from analyze import FathersAnalyzer ,看起来像是重新导入了这个模块,但是运行却发现,它运行的是修改之前的代码。

这是因为,一个 Jupyter Notebook 中的所有代码,都是在同一个运行时中运行的代码,当你多次导入同一个模块时,Python 的包管理机制会自动忽略后面的导入,始终只使用第一次导入的结果(所以使用这种方式也可以实现单例模式)。

那么如果我在修改了被导入的包以后,想重新导入它怎么办呢?有3种方案:

importlib

但这种方案弊端也很明显——除非你按顺序运行每一个 Cell,否则,你的代码会变成下图这样:

在每一个 Cell 里面都需要 重新加载一次分析模块,否则,很有可能在你单独运行某一个 Cell 的时候,用的是老的代码,就会导致难以察觉的 bug。

使用 Jupyter 自带的 %autoreload :

%load_ext autoreload
%autoreload 1
%aimport analyze 

data = 123
importlib.reload(analyze)
father = analyze.FathersAnalyzer(data)
result = father.analyze()
print(result)

运行效果如下图所示:

其中关键的代码有三行:

%load_ext autoreload
%autoreload 1
%aimport analyze 

这三行代码只有在 Jupyter 里面才能正常运行,在 普通的.py 文件里面这样写会报错。它们的作用是:第1行启动 autoreload 机制。第2行,设置自动加载通过 %aimport 导入的模块。第3行使用 %aimport 导入 analyze 模块。

这样写以后,任意一个 Cell 运行,所有被 %aimport 导入的模块都会被重新加载一次。从而让你每次都使用最新的代码。

当然,你还可以进一步偷懒,把特殊代码缩减为2行:

%load_ext autoreload
%autoreload 2

%autoreload 后面的参数被设置为2时,每次运行任意一个 Cell,都会自动重新加载所有 import xxx 导入的模块。这样做的代价是,运行会慢一些。

总结

以上所述是小编给大家介绍的在 Jupyter 中重新导入特定的 Python 文件的方法,希望对大家有所帮助!

相关文章

  • python如何将数据输出到文件中

    python如何将数据输出到文件中

    这篇文章主要介绍了python如何将数据输出到文件中问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01
  • Python函数使用的相关练习题分享

    Python函数使用的相关练习题分享

    这篇文章主要介绍了Python函数使用的相关练习题分享,文章基于python函数内容展开其相关例题,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • Pycharm使用爬虫时遇到etree红线问题及解决

    Pycharm使用爬虫时遇到etree红线问题及解决

    这篇文章主要介绍了Pycharm使用爬虫时遇到etree红线问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python标准库中的logging用法示例详解

    Python标准库中的logging用法示例详解

    logging是Python标准库中记录常用的记录日志库,通过logging模块存储各种格式的日志,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等,这篇文章主要介绍了Python标准库中的logging,需要的朋友可以参考下
    2022-09-09
  • Pytorch之卷积层的使用详解

    Pytorch之卷积层的使用详解

    今天小编就为大家分享一篇Pytorch之卷积层的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 利用Python创建第一个Django框架程序

    利用Python创建第一个Django框架程序

    这篇文章主要介绍了利用Python创建第一个Django框架程序,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下
    2022-06-06
  • python 中的list和array的不同之处及转换问题

    python 中的list和array的不同之处及转换问题

    python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。这篇文章给大家介绍了python 中的list和array的不同之处及转换问题,需要的朋友参考下吧
    2018-03-03
  • python中的垃圾回收(GC)机制

    python中的垃圾回收(GC)机制

    这篇文章主要介绍了python中的GC机制,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • 关于Python的Thread线程模块详解

    关于Python的Thread线程模块详解

    这篇文章主要介绍了关于Python的Thread线程模块详解,进程是程序的一次执行,每个进程都有自己的地址空间、内存、数据栈以及其他记录其运行的辅助数据,需要的朋友可以参考下
    2023-05-05
  • 利用python调用摄像头的实例分析

    利用python调用摄像头的实例分析

    在本篇文章里小编给大家整理了一篇关于利用python调用摄像头的实例分析内容,有需要的朋友们跟着参考下。
    2021-06-06

最新评论