Python坐标线性插值应用实现

 更新时间:2019年11月13日 09:33:40   作者:北巷的猫  
这篇文章主要介绍了Python坐标线性插值应用实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、背景

在野外布设700米的测线,点距为10米,用GPS每隔50米测量一个坐标,再把测线的头和为测量一个坐标。现在需使用线性插值的方法求取每两个坐标之间的其他4个点的值。

二、插值原理

使用等比插值的方法

起始值为 a

终止值为 b

步长值为 (a-b)/5

后面的数分别为 a+n, a+2n, a+3n, a+4n

三、代码实习对 x 插值

interx.py

import numpy as np
f = np.loadtxt('datax.txt')
a = f[:, 0]
b = f[:, 1]
for j in np.arange(len(a)):
	aa = a[j]*1000	# np.arrange()会自动去掉小数
	bb = b[j]*1000
	n = (bb-aa) / 5
	x = np.arange(6)
	x[0] = aa
	print(x[0]/1000)
	for i in range(1, 5, 1):
		x[i] = x[i-1]+n
		print(x[i]/1000)
		i = i+1
	# print(bb/1000)
	# print("\n")

datax.txt

514873.536 	514883.939 
514883.939 	514894.358 
514894.358 	514903.837 
514903.837 	514903.807 
514903.807 	514907.179 
514907.179 	514911.356 
514911.356 	514913.448 
514913.448 	514913.315 
514913.315 	514917.344 
514917.344 	514923.684 
514923.684 	514924.801
514924.801	514929.697 
514929.697 	514916.274

对 y 插值

intery.py

import numpy as np
f = np.loadtxt('datay.txt')
a = f[:, 0]
b = f[:, 1]
for j in np.arange(len(a)):
	aa = (a[j] - 2820000)*1000	# 数据太长会溢出
	bb = (b[j]-2820000)*1000
	n = (bb-aa) / 5
	x = np.arange(6)
	x[0] = aa
	print(x[0]/1000+2820000)
	for i in range(1, 5, 1):
		x[i] = x[i-1]+n
		print(x[i]/1000+2820000)
		i = i+1
	# print(bb/1000)
	# print("\n")

datay.txt

2820617.820 	2820660.225 
2820660.225 	2820693.988 
2820693.988 	2820819.199 
2820819.199 	2820831.510 
2820831.510 	2820858.666 
2820858.666 	2820973.487 
2820973.487 	2821017.243 
2821017.243 	2821019.518 
2821019.518 	2821058.223 
2821058.223 	2821097.575 
2821097.575 	2821144.436 
2821144.436 	2821173.356 
2821173.356 	2821218.889 

四、最终成果

手动把两次插值结果复制到dataxy中

dataxy.txt

514873.536 	2820617.819 
514875.616 	2820626.300 
514877.696 	2820634.781 
514879.776 	2820643.262 
514881.856 	2820651.743 
514883.939 	2820660.225 
514886.022 	2820666.977 
514888.105 	2820673.729 
514890.188 	2820680.481 
514892.271 	2820687.233 
514894.358 	2820693.987 
514896.253 	2820719.029 
514898.148 	2820744.071 
514900.043 	2820769.113 
514901.938 	2820794.155 
514903.837 	2820819.199 
514903.831 	2820821.661 
514903.825 	2820824.123 
514903.819 	2820826.585 
514903.813 	2820829.047 
514903.807 	2820831.509 
514904.481 	2820836.940 
514905.155 	2820842.371 
514905.829 	2820847.802 
514906.503 	2820853.233 
514907.179 	2820858.666 
514908.014 	2820881.630 
514908.849 	2820904.594 
514909.684 	2820927.558 
514910.519 	2820950.522 
514911.356 	2820973.487 
514911.774 	2820982.238 
514912.192 	2820990.989 
514912.610 	2820999.740 
514913.028 	2821008.491 
514913.448 	2821017.242 
514913.421 	2821017.697 
514913.394 	2821018.152 
514913.367 	2821018.607 
514913.340 	2821019.062 
514913.315 	2821019.518 
514914.120 	2821027.259 
514914.925 	2821035.000 
514915.730 	2821042.741 
514916.535 	2821050.482 
514917.344 	2821058.223 
514918.612 	2821066.093 
514919.880 	2821073.963 
514921.148 	2821081.833 
514922.416 	2821089.703 
514923.684 	2821097.575 
514923.907 	2821106.947 
514924.130 	2821116.319 
514924.353 	2821125.691 
514924.576 	2821135.063 
514924.801 	2821144.436 
514925.780 	2821150.219 
514926.759 	2821156.002 
514927.738 	2821161.785 
514928.717 	2821167.568 
514929.697 	2821173.356 
514927.012 	2821182.462 
514924.327 	2821191.568 
514921.642 	2821200.674 
514918.957 	2821209.780 

五、画图对比

dataxy.py

import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
# 解决中文字体显示不出来
mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False

a = np.loadtxt("datax.txt")
b = np.loadtxt('datay.txt')
c = np.loadtxt('dataxy.txt')
x = a[: ,0]
y = b[: ,0]
xx = c[:,0]
yy = c[:,1]
plt.plot(x,y,color = 'orange',
		label = '插值线段')
plt.scatter(xx,yy,marker='o',
	c = 'deepskyblue',
	alpha = 0.6,
	label = '实测点位')
plt.legend()
plt.title('Python坐标插值')
plt.grid()
# 保存高清图片,dpi表示分辨率
plt.savefig('out.png',dpi = 600)
plt.show()

文件结构

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python实现统计英文单词个数及字符串分割代码

    Python实现统计英文单词个数及字符串分割代码

    这篇文章主要介绍了Python实现统计英文单词个数及字符串分割方法,本文分别给出代码实例,需要的朋友可以参考下
    2015-05-05
  • pandas数据探索之合并数据示例详解

    pandas数据探索之合并数据示例详解

    这篇文章主要为大家介绍了pandas数据探索之合并数据示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • python3+PyQt5 自定义窗口部件--使用窗口部件样式表的方法

    python3+PyQt5 自定义窗口部件--使用窗口部件样式表的方法

    今天小编就为大家分享一篇python3+PyQt5 自定义窗口部件--使用窗口部件样式表的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python单元测试入门到精通讲解

    Python单元测试入门到精通讲解

    单元测试是软件开发中不可或缺的一部分,有助于确保代码的正确性、可维护性和可扩展性,在Python中,有丰富的工具和库可用于进行单元测试,本文将为你提供一个全面的指南,从入门到精通,轻松掌握Python单元测试的方方面面
    2023-11-11
  • python工具dtreeviz决策树可视化和模型可解释性

    python工具dtreeviz决策树可视化和模型可解释性

    这篇文章主要介绍了python工具dtreeviz决策树可视化和模型可解释性,决策树是梯度提升机和随机森林的基本构建块,在学习这些模型的工作原理和模型可解释性时,可视化决策树是一个非常有帮助,下文相关资料,需要的小伙伴可任意参考一下
    2022-03-03
  • 解决Python安装cryptography报错问题

    解决Python安装cryptography报错问题

    这篇文章主要介绍了解决Python安装cryptography报错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-09-09
  • python pygame实现五子棋小游戏

    python pygame实现五子棋小游戏

    这篇文章主要为大家详细介绍了python pygame实现五子棋小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Python查询Mysql时返回字典结构的代码

    Python查询Mysql时返回字典结构的代码

    MySQLdb默认查询结果都是返回tuple,输出时候不是很方便,必须按照0,1这样读取,无意中在网上找到简单的修改方法,就是传递一个cursors.DictCursor就行
    2012-06-06
  • python实现word 2007文档转换为pdf文件

    python实现word 2007文档转换为pdf文件

    这篇文章主要为大家详细介绍了python实现word 2007文档转换为pdf文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 关于Python中Inf与Nan的判断问题详解

    关于Python中Inf与Nan的判断问题详解

    这篇文章主要介绍了关于Python中Inf与Nan的判断问题,文中介绍的很详细,对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。
    2017-02-02

最新评论