使用Python实现正态分布、正态分布采样

 更新时间:2019年11月20日 11:03:47   作者:Master He  
今天小编就为大家分享一篇使用Python实现正态分布、正态分布采样,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

多元正态分布(多元高斯分布)

直接从多元正态分布讲起。多元正态分布公式如下:

这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点。而协方差矩阵在多维上形式较多。

协方差矩阵

一般来说,协方差矩阵有三种形式,分别称为球形、对角和全协方差。以二元为例:

为了方便展示不同协方差矩阵的效果,我们以二维为例。(书上截的图,凑活着看吧,是在不想画图了)

其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了。可以看出,球形协方差矩阵,会产生圆形(二维)或者球形(三维)的等高线,对角协方差矩阵和全协方差矩阵,会产生椭圆形的等高线。更一般地,在一个D维空间中,球形协方差矩阵,会产生一个D维球面等高线;对角协方差矩阵,会产生一个坐标轴对其的椭球型等高线;全协方差矩阵,会在任意位置产生一个坐标轴对其的椭球型等高线。

当协方差矩阵是球形的或者是对角的,单独的变量之间是独立的

协方差分解

时间不足,具体解释以后再补

下面是协方差分解的原理图

变量的线性变换(正态分布采样原理)

python实现

多元正态分布在python的numpy库中有很方便一个函数:

np.random.multivariate_normal(mean=mean, cov=conv, size=N)

这个函数中,mean代表均值,是在每个维度中的均值。cov代表协方差矩阵,就像上面讲的那种形式,协方差矩阵值的大小将决定采样范围的大小。size代表需要采样生成的点数,此时输出大小为(N*D)的坐标矩阵。

另外,其他参数包括:check_valid,这个参数用于决定当cov即协方差矩阵不是半正定矩阵时程序的处理方式,它一共有三个值:warn,raise以及ignore。当使用warn作为传入的参数时,如果cov不是半正定的程序会输出警告但仍旧会得到结果;当使用raise作为传入的参数时,如果cov不是半正定的程序会报错且不会计算出结果;当使用ignore时忽略这个问题即无论cov是否为半正定的都会计算出结果

tol:检查协方差矩阵奇异值时的公差,float类型。

下面是一个小demo

import numpy as np
import matplotlib.pyplot as plt

mean = np.array([2,1])    # 均值
conv = np.array([[0.5, 0.0],  # 协方差矩阵
     [0.0, 0.5]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv, size=1000).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()

注意,单独取出每个坐标轴的坐标数组时,需要在最后加上.T,否则会报错 效果展示:

协方差值的大小对采样的影响:

mean = np.array([2,1])    # 均值
conv = np.array([[0.5, 0.0],  # 协方差矩阵
     [0.0, 0.5]])

conv2 = np.array([[10, 0.0],  # 协方差矩阵
     [0.0, 10]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv2, size=200).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()

效果如下:

这里没有设定随机种子店,每次随机数会有所不同。

以上这篇使用Python实现正态分布、正态分布采样就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Keras 快速解决OOM超内存的问题

    Keras 快速解决OOM超内存的问题

    这篇文章主要介绍了Keras 快速解决OOM超内存的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python入门教程(二十)Python的Lambda表达式

    Python入门教程(二十)Python的Lambda表达式

    这篇文章主要介绍了Python入门教程(二十)Python的Lambda表达式,lambda表达式是一行的函数。它们在其他语言中也被称为匿名函数,lambda表达式非常有用,可以让代码简单,简洁,需要的朋友可以参考下
    2023-04-04
  • python2 中 unicode 和 str 之间的转换及与python3 str 的区别

    python2 中 unicode 和 str 之间的转换及与python3 str 的区别

    这篇文章主要介绍了python2 中 unicode 和 str 之间的转换及与python3 str 的区别 本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-07-07
  • Python中规范定义命名空间的一些建议

    Python中规范定义命名空间的一些建议

    命名空间是Python程序的一大根本,编程时持命名空间的整洁还是十分必要的,这里就来为大家总结Python中规范定义命名空间的一些建议,需要的朋友可以参考下
    2016-06-06
  • Python 余弦相似度与皮尔逊相关系数 计算实例

    Python 余弦相似度与皮尔逊相关系数 计算实例

    今天小编就为大家分享一篇Python 余弦相似度与皮尔逊相关系数 计算实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python中遇到的小问题及解决方法汇总

    Python中遇到的小问题及解决方法汇总

    到年底了,现在的时间适合写点最近的小总结,所以下面这篇文章主要介绍了Python中遇到的一些小问题及解决方法,需要的朋友可以参考借鉴,下面来一起学习学习吧。
    2017-01-01
  • python防止栈溢出的实例讲解

    python防止栈溢出的实例讲解

    在本篇文章里小编给大家整理了一篇关于python防止栈溢出的实例讲解内容,有兴趣的朋友们可以学习参考下。
    2021-05-05
  • Django如何实现上传图片功能

    Django如何实现上传图片功能

    这篇文章主要介绍了Django如何实现上传图片功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Python实现将数据写入netCDF4中的方法示例

    Python实现将数据写入netCDF4中的方法示例

    这篇文章主要介绍了Python实现将数据写入netCDF4中的方法,涉及Python数据处理与文件读写相关操作技巧,需要的朋友可以参考下
    2018-08-08
  • pytorch 把图片数据转化成tensor的操作

    pytorch 把图片数据转化成tensor的操作

    这篇文章主要介绍了pytorch 把图片数据转化成tensor的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03

最新评论