python快速排序的实现及运行时间比较

 更新时间:2019年11月22日 09:24:14   作者:西西嘛呦  
这篇文章主要介绍了python快速排序的实现及运行时间比较,本文通过两种方法给大家介绍,大家可以根据自己需要选择适合自己的方法,对python实现快速排序相关知识感兴趣的朋友一起看看吧

快速排序的基本思想:首先选定一个数组中的一个初始值,将数组中比该值小的放在左边,比该值大的放在右边,然后分别对左边的数组进行如上的操作,对右边的数组进行如上的操作。(分治+递归)

1.利用匿名函数lambda

匿名函数的基本用法func_name  = lambda x:array,冒号左边的x代表传入的参数,冒号右边的array代表返回值,当然名字是可以自己取的。

quick_sort = lambda array: \
  array if len(array) <= 1 \
    else quick_sort([item for item in array[1:] if item <= array[0]]) \
       + [array[0]] + \
       quick_sort([item for item in array[1:] if item > array[0]])

2.将匿名函数拆解封装为函数

def func2(array):
  if len(array)<=1:
    return array
  tmp = array[0]
  left = [x for x in array[1:] if x<=tmp]
  right = [x for x in array[1:] if x>tmp]
  return func2(left) + [tmp] + func2(right)

3.网上常见的

def func2(array,left,right):
  if left>=right:
    return
  low=left
  high=right
  tmp=array[low]
  while left<right:
    while left<right and array[right]>tmp:
      right-=1
    array[left] = array[right]
    while left<right and array[left]<=tmp:
      left+=1
    array[right]=array[left]
  array[right]=tmp
  func2(array,low,left-1)
  func2(array,left+1,high)

4.算法导论里面的

def func3(array, l, r):
  if l < r:
    q = partition(array, l, r)
    func3(array, l, q - 1)
    func3(array, q + 1, r)
def partition(array, l, r):
  x = array[r]
  i = l - 1
  for j in range(l, r):
    if array[j] <= x:
      i += 1
      array[i], array[j] = array[j], array[i]
  array[i + 1], array[r] = array[r], array[i + 1]
  return i + 1

5.利用栈实现非递归版本

def func4(array, l, r):
  if l >= r:
    return
  stack = []
  stack.append(l)
  stack.append(r)
  while stack:
    low = stack.pop(0)
    high = stack.pop(0)
    if high - low <= 0:
      continue
    x = array[high]
    i = low - 1
    for j in range(low, high):
      if array[j] <= x:
        i += 1
        array[i], array[j] = array[j], array[i]
    array[i + 1], array[high] = array[high], array[i + 1]
    stack.extend([low, i, i + 2, high])

6.python内置的

sorted(array)

本来是想利用装饰器来测一下每个函数的运行时间的,但是由于快排里面存在递归,使用装饰器会报错,就只好一个个计算了。这里还是贴一下用装饰器计算时间的代码:

def count_time(func):
  @wraps(func)
  def helper(func,*args,**kwargs):
    start=time()
    result = func(*args,**kwargs)
    end=time()
    print("函数:", func.__name__, "运行时间:", round(end - start, 4), "s")
    return result
  return helper

这里我们的输入是随机生成的在0-100间的整数,我们测试一下在不同数量下的消耗时间:

from functools import wraps
from random import randint
from time import time
func1_start =time()
res = quick_sort(array)
func1_end =time()
print("函数:func1 运行时间:", round(func1_end - func1_start, 4), "s")
func2_start =time()
func2(array)
func2_end =time()
print("函数:func2 运行时间:", round(func2_end - func2_start, 4), "s")
func3_start =time()
func3(array,0,len(array)-1)
func3_end =time()
print("函数:func3 运行时间:", round(func3_end - func3_start, 4), "s")
func4_start =time()
func4(array,0,len(array)-1)
func4_end =time()
print("函数:func4 运行时间:", round(func4_end - func4_start, 4), "s")
func5_start =time()
func5(array,0,len(array)-1)
func5_end =time()
print("函数:func5 运行时间:", round(func5_end - func5_start, 4), "s")
func6_start =time()
sorted(array)
func6_end =time()
print("函数:func6 运行时间:", round(func6_end - func6_start, 4), "s")

输入array的定义:

array = [randint(0,100) for i in range(5000)]

需要注意的是,随着数据量的增加,方法4,也就是算法导论中的会出现以下问题:

 这是因为python中的递归深度是有一定限制的,可以使用如下方法暂时解决该问题:

import sys
sys.setrecursionlimit(100000)

同时,方法4还会出现内存溢出问题,方法4也太坑了。

 最后对比一下这些方法消耗的时间:

 总结:

方法一、方法二速度较快,同时也较好理解,想要学会快速排序,只要记住方法二即可;

python内置的排序速度还是最快的呀;

以上所述是小编给大家介绍的python快速排序的实现及运行时间比较,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

  • Qt6中重大改变的QtMultimedia多媒体模块实现

    Qt6中重大改变的QtMultimedia多媒体模块实现

    本文主要介绍了Qt6中重大改变的QtMultimedia多媒体模块实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • Python实现EXCEL表格的排序功能示例

    Python实现EXCEL表格的排序功能示例

    这篇文章主要介绍了Python实现EXCEL表格的排序功能示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • Pytorch配置GPU环境方式

    Pytorch配置GPU环境方式

    这篇文章主要介绍了Pytorch配置GPU环境方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • Python函数中的全局变量详解

    Python函数中的全局变量详解

    大家好,本篇文章主要讲的是Python函数中的全局变量详解,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2022-01-01
  • Python删除指定字符之前或之后所有内容的方法

    Python删除指定字符之前或之后所有内容的方法

    本文主要介绍了Python删除指定字符之前或之后所有内容的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • 一文详细介绍Python两条斜杠 // 的作用和用法

    一文详细介绍Python两条斜杠 // 的作用和用法

    Python中的两条斜杠//是整数除法运算符,返回商的整数部分,丢弃小数部分,它与取模运算符%经常一起使用,帮助理解除法的整数和余数,与普通除法运算符/不同,//总是返回整数结果,在处理负数时,//会向绝对值更大的方向取整,本文就来介绍一下
    2024-11-11
  • Python threading多线程编程实例

    Python threading多线程编程实例

    这篇文章主要介绍了Python threading多线程编程实例,本文讲解了使用函数和线程类实现多线程编程的例子,需要的朋友可以参考下
    2014-09-09
  • python turtle绘制多边形和跳跃和改变速度特效

    python turtle绘制多边形和跳跃和改变速度特效

    这篇文章主要介绍了python turtle绘制多边形和跳跃和改变速度特效,文章实现过程详细,需要的小伙伴可以参考一下,希望对你的学习有所帮助
    2022-03-03
  • Python 内置函数complex详解

    Python 内置函数complex详解

    这篇文章主要介绍了Python 内置函数complex详解的相关资料,需要的朋友可以参考下
    2016-10-10
  • python进阶TensorFlow神经网络拟合线性及非线性函数

    python进阶TensorFlow神经网络拟合线性及非线性函数

    这篇文章是python进阶学习主要介绍了TensorFlow神经网络拟合线性及非线性函数原理及示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-10-10

最新评论