python实现拉普拉斯特征图降维示例

 更新时间:2019年11月25日 14:32:50   作者:u012369559  
今天小编就为大家分享一篇python实现拉普拉斯特征图降维示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。

步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。

步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:

步骤三: ,实现广义本征分解:

使 是最小的m+1个本征值。忽略与 =0相关的本征向量,选取另外m个本征向量即为降维后的向量。

1、python实现拉普拉斯降维

def laplaEigen(dataMat,k,t): 
 m,n=shape(dataMat) 
 W=mat(zeros([m,m])) 
 D=mat(zeros([m,m])) 
 for i in range(m): 
 k_index=knn(dataMat[i,:],dataMat,k) 
 for j in range(k): 
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] 
  sqDiffVector=array(sqDiffVector)**2 
  sqDistances = sqDiffVector.sum() 
  W[i,k_index[j]]=math.exp(-sqDistances/t) 
  D[i,i]+=W[i,k_index[j]] 
 L=D-W 
 Dinv=np.linalg.inv(D) 
 X=np.dot(D.I,L) 
 lamda,f=np.linalg.eig(X) 
return lamda,f 
def knn(inX, dataSet, k): 
 dataSetSize = dataSet.shape[0] 
 diffMat = tile(inX, (dataSetSize,1)) - dataSet 
 sqDiffMat = array(diffMat)**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort() 
return sortedDistIndicies[0:k] 
dataMat, color = make_swiss_roll(n_samples=2000) 
lamda,f=laplaEigen(dataMat,11,5.0) 
fm,fn =shape(f) 
print 'fm,fn:',fm,fn 
lamdaIndicies = argsort(lamda) 
first=0 
second=0 
print lamdaIndicies[0], lamdaIndicies[1] 
for i in range(fm): 
 if lamda[lamdaIndicies[i]].real>1e-5: 
 print lamda[lamdaIndicies[i]] 
 first=lamdaIndicies[i] 
 second=lamdaIndicies[i+1] 
 break 
print first, second 
redEigVects = f[:,lamdaIndicies] 
fig=plt.figure('origin') 
ax1 = fig.add_subplot(111, projection='3d') 
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) 
fig=plt.figure('lowdata') 
ax2 = fig.add_subplot(111) 
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) 
plt.show() 

2、拉普拉斯降维实验

用如下参数生成实验数据存在swissdata.dat里面:

def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): 
 #Generate a swiss roll dataset. 
 t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples)) 
 x = t * np.cos(t) 
 y = 83 * random.rand(1, n_samples) 
 z = t * np.sin(t) 
 X = np.concatenate((x, y, z)) 
 X += noise * random.randn(3, n_samples) 
 X = X.T 
 t = np.squeeze(t) 
return X, t 

实验结果如下:

以上这篇python实现拉普拉斯特征图降维示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 详解Python中where()函数的用法

    详解Python中where()函数的用法

    本篇文章主要介绍了详解Python中where()函数的用法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03
  • 基于Python实现图片浏览器的应用程序

    基于Python实现图片浏览器的应用程序

    图像浏览器应用程序是一种非常常见和实用的工具,这篇文章就来为大家介绍一下如何使用Python编程语言和wxPython库创建一个简单的图像浏览器应用程序,感兴趣的可以了解下
    2023-10-10
  • 使用Python删除列表中重复元素的几种方法小结

    使用Python删除列表中重复元素的几种方法小结

    在 Python 编程中,我们经常会遇到列表中存在重复元素的情况,为了数据处理和分析的准确性,我们需要对这些重复元素进行清理,本文将介绍几种使用 Python 删除列表中重复元素的方法,并比较它们的优缺点,需要的朋友可以参考下
    2025-04-04
  • Python使用回溯法子集树模板解决爬楼梯问题示例

    Python使用回溯法子集树模板解决爬楼梯问题示例

    这篇文章主要介绍了Python使用回溯法子集树模板解决爬楼梯问题,简单说明了爬楼梯问题并结合实例形式给出了Python回溯法子集树模板解决爬楼梯问题的相关操作技巧,需要的朋友可以参考下
    2017-09-09
  • Python生成元组和字典的方法

    Python生成元组和字典的方法

    本文主要介绍了Python生成元组和字典的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • openCV入门学习基础教程第一篇

    openCV入门学习基础教程第一篇

    OpenCV是计算机视觉领域一个图像和视频处理库,用于各种图像和视频分析,如面部识别和检测,车牌阅读,照片编辑,高级机器人视觉,光学字符识别等等,下面这篇文章主要给大家介绍了关于openCV入门学习基础教程第一篇的相关资料,需要的朋友可以参考下
    2022-11-11
  • Python中pip工具的安装以及使用

    Python中pip工具的安装以及使用

    今天给大家带来关于Python的相关知识,文章围绕着pip工具的安装以及使用展开,文中有非常详细的图文示例及介绍,需要的朋友可以参考下
    2021-06-06
  • Django使用unittest模块进行单元测试过程解析

    Django使用unittest模块进行单元测试过程解析

    这篇文章主要介绍了Django使用unittest模块进行单元测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • python爬虫之验证码篇3-滑动验证码识别技术

    python爬虫之验证码篇3-滑动验证码识别技术

    本篇涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成。对python爬虫滑动验证码识别技术感兴趣的朋友跟随小编一起看看吧
    2019-04-04
  • Pytorch实现常用乘法算子TensorRT的示例代码

    Pytorch实现常用乘法算子TensorRT的示例代码

    pytorch 用于训练,TensorRT用于推理是很多AI应用开发的标配。大家往往更加熟悉 pytorch 的算子,而不太熟悉TensorRT的算子。本文介绍了Pytorch中常用乘法的TensorRT实现,感兴趣的可以了解一下
    2022-06-06

最新评论