python实现把两个二维array叠加成三维array示例

 更新时间:2019年11月29日 10:39:45   作者:东写西读1  
今天小编就为大家分享一篇python实现把两个二维array叠加成三维array示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

遇到这样一个需求:程序中每次循环生成一个二维array,需要把每次循环的二维array叠加成一个三维的array,例如有如下两个矩阵:

组合成以下这种形式:

这样组合之后,有一个非常大的优点就是:保持原有的二维array的形式不变,便于以后取出,比如说我想从C中取出A,只需要执行:A=C[0,:]即可。

但是百度之后发现,在python中,numpy函数包中并没有对应的函数来实现三维array中不断添加二维array(有知道这个函数的欢迎在评论区告诉我)

这里,提供两种“曲线救国”的解决方案:

方法一:

对于两个(或者多个)同一维度的矩阵,直接利用np.array()重新构造一个array,这样可以变相起到扩展维数的作用。例如:

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[2,2,3],[4,5,6]])
c = np.array([[3,2,3],[4,5,6]])
print('矩阵a:\n',a)
print('维数:',a.shape)

com = np.array([a,b,c])
print('合并矩阵:\n',com)
print('维数:',com.shape)

输出结果为:

矩阵a:

 [[1 2 3]
 [4 5 6]]

维数: (2, 3)

合并矩阵:

 [[[1 2 3]
 [4 5 6]]

 [[2 2 3]
 [4 5 6]]

 [[3 2 3]
 [4 5 6]]]

维数: (3, 2, 3)

方法二:

但是,如果两个array,使用方法一时会出现如下结果:

import numpy as np

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])

com = np.array([aa,a])
print('合并矩阵:\n',com)
print('维数:',com.shape)

输出结果:

合并矩阵:

 [array([[[1, 2, 3],
    [4, 5, 6]],

    [[2, 2, 3],
    [4, 5, 6]],

    [[3, 2, 3],
    [4, 5, 6]]])
 array([[4, 2, 3],
    [4, 5, 6]])]
维数: (2,)

可以看到:输出的维数不对,以上方法就不适用了。

那么,我们就需要利用np.append和array.reshape()函数对数组进行拼接之后重组,具体实现如下:

import numpy as np

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])
data = np.append(aa,a)#先拼接成一个行向量
print(data)

dim = aa.shape#获取原矩阵的维数
print('原矩阵维数:',dim)
data1 = data.reshape(dim[0]+1,dim[1],dim[2])#再通过原矩阵的维数重新组合

print('合并矩阵:\n',data1)
print('维数:',data1.shape)

输出结果:

方法三:

相比于前两种方法,这种方法可谓“曲线救国”之典范,具体思路是:先转化成list,拼接后再转化回去。

这是因为list中的append()函数可以在添加函数的时候不改变原来list的维度。虽然没有对这种方法进行一个速度测试,但直觉来看时间复杂度挺高的,建议慎用。

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])

#将array转换成list
aa = aa.tolist(aa)
a = a.tolist(a)

aa.append(a)#注意与方法二中np.append()用法的区别
com = np.array(aa)
print(com.shape)

输出结果:

合并矩阵:
   [[[1 2 3]
    [4 5 6]]

    [[2 2 3]
    [4 5 6]]

    [[3 2 3]
    [4 5 6]]
    
    [[4 2 3]
    [4, 5, 6]]]
维数: (4,2,3)

这里注意:

两种类型的相互转换函数:

array转list:a = a.tolist()

list转array:a =np.array(a)

这里需要注意:A.tolist 和 list(A) 外表看,都是把一个array转换成list,但是两者还是有一些区别的。看下边这个例子:

A = np.reshape(np.arange(6),(3,2)) #生成一个3行2列的array
print("数组A:",A)
print('A.tolist():',A.tolist())
print('list(A): ',list(A))

结果如下:

数组A:

array([[0, 1],
    [2, 3],
    [4, 5]])

A.tolist(): [[0, 1], [2, 3], [4, 5]]

list(A): [array([0, 1]), array([2, 3]), array([4, 5])]

可以看到:list(A)只是把最外层的array变成了list,但是里边的每个向量都还是array类型。

最后吐槽一句,其实numpy包中对于一位数组和二维数组的拼接,可选函数很多,但是唯独没有考虑更高维数组的拼接。甚至连重写的append函数都没有原来的好用,真是青出于蓝而败于蓝啊,痛心。强烈建议numpy包在未来的更新中尽快解决这个问题。

在深度学习中,也有类似于这样的需求,比如用图片来训练模型时,彩色图片就是一个个三维数组,需要把一批图片都送到网络中就需要把多个三维矩阵叠加。

tensorflow貌似提供了这样的函数,在搭建深度学习框架时可以直接使用,以后有机会继续扩展。

扩展阅读:

最后,附几个二维array中,添加一行或者一列元素的函数:

1 . np.append(a,b,axis=数字)

其中:

没有axis属性:把所有元素展开

axis = 0:添加添加n行

axis = 1:添加n列

口诀:0行1列,适用于所有的numpy函数的axis属性。

2.增加一行或者一列。

b = np.row_stack((a, 行元素))# 添加行
c = np.column_stack((a, 列元素)) #添加列

以上这篇python实现把两个二维array叠加成三维array示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python中aiohttp的简单使用

    Python中aiohttp的简单使用

    aiohttp是Python中一个强大的异步HTTP客户端和服务器框架,它可以帮助开发者快速构建高性能的Web应用程序。本文将介绍aiohttp的基本概念、使用方法和常见应用场景,帮助读者更好地了解和使用这个优秀的框架
    2023-03-03
  • python 网络编程详解及简单实例

    python 网络编程详解及简单实例

    这篇文章主要介绍了python 网络编程详解及简单实例的相关资料,需要的朋友可以参考下
    2017-04-04
  • Python实现调度算法代码详解

    Python实现调度算法代码详解

    这篇文章主要介绍了Python实现调度场算法代码详解,具有一定参考价值,需要的朋友可以了解下。
    2017-12-12
  • Python基于scrapy采集数据时使用代理服务器的方法

    Python基于scrapy采集数据时使用代理服务器的方法

    这篇文章主要介绍了Python基于scrapy采集数据时使用代理服务器的方法,涉及Python使用代理服务器的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-04-04
  • python反转一个三位整数的多种实现方案

    python反转一个三位整数的多种实现方案

    这篇文章主要介绍了python反转一个三位整数的多种实现方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 浅谈Selenium+Webdriver 常用的元素定位方式

    浅谈Selenium+Webdriver 常用的元素定位方式

    这篇文章主要介绍了浅谈Selenium+Webdriver 常用的元素定位方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • 在 pytorch 中实现计算图和自动求导

    在 pytorch 中实现计算图和自动求导

    这篇文章主要介绍了在 pytorch 中实现计算图和自动求导,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-06-06
  • pandas DataFrame truediv的具体使用

    pandas DataFrame truediv的具体使用

    本文主要介绍了pandas DataFrame truediv的具体使用,该方法用于执行逐元素的真除法操作,下面就来具体介绍一下,感兴趣的可以了解一下
    2025-04-04
  • Django框架HttpResponse对象用法实例分析

    Django框架HttpResponse对象用法实例分析

    这篇文章主要介绍了Django框架HttpResponse对象用法,结合实例形式分析了Django框架HttpResponse对象基本原理、功能及响应请求的相关操作技巧,需要的朋友可以参考下
    2019-11-11
  • python自动化测试之setUp与tearDown实例

    python自动化测试之setUp与tearDown实例

    这篇文章主要介绍了python自动化测试之setUp与tearDown实例,其中setUp()方法中进行测试前的初始化工作,并在tearDown()方法中执行测试后的清除工作,setUp()和tearDown()都是TestCase类中定义的方法,需要的朋友可以参考下
    2014-09-09

最新评论