Python实现把多维数组展开成DataFrame

 更新时间:2019年11月30日 09:22:31   作者:lyghe  
今天小编就为大家分享一篇Python实现把多维数组展开成DataFrame,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

import numpy as np
import pandas as pd

################# 准备数据 #################
a1 = np.arange(1,101)
a3 = a1.reshape((2,5,10))
a3
'''
array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
  [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
  [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
  [ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
  [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]],  
  [[ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
  [ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
  [ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
  [ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
  [ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]]])
'''

################# 准备标签 #################
# 第 1 维的标签
index1 = pd.Series(np.arange(1,11))
index1 = index1.astype(str)
index1 = 'A'+index1
index1
'''
0  A1
1  A2
2  A3
3  A4
4  A5
5  A6
6  A7
7  A8
8  A9
9 A10
'''

# 第 2 维的标签
index2 = pd.Series(np.arange(1,6))
index2 = index2.astype(str)
index2 = 'B'+index2
index2
'''
0 B1
1 B2
2 B3
3 B4
4 B5
'''

# 第 3 维的标签
index3 = pd.Series(np.arange(1,3))
index3 = index3.astype(str)
index3 = 'C'+index3
index3
'''
0 C1
1 C2
'''

################# 展开数据 #################
# 把三维数组展开
value = a3.flatten()
value = pd.Series(value)
value.name = 'value'
value
'''
0  1
1  2
2  3
  ... 
97  98
98  99
99 100
Name: value, Length: 100, dtype: int64
'''

################# 展开标签 #################
import itertools

# index的笛卡尔乘积。注意:高维在前,低维在后
prod = itertools.product(index3, index2, index1 )
# 转换为DataFrame
prod = pd.DataFrame([x for x in prod])
prod.columns = ['C', 'B', 'A']
prod.T
'''
 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \
C C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 ... C2 C2 C2 C2 C2 C2 C2 
B B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 ... B5 B5 B5 B5 B5 B5 B5 
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ... A1 A2 A3 A4 A5 A6 A7 
 97 98 99 
C C2 C2 C2 
B B5 B5 B5 
A A8 A9 A10 
[3 rows x 100 columns]
'''

################# 最终数据 #################
# 合并成一个DataFrame
pd.concat([prod, value], axis=1)
'''
  C B A value
0 C1 B1 A1  1
1 C1 B1 A2  2
2 C1 B1 A3  3
3 C1 B1 A4  4
4 C1 B1 A5  5
5 C1 B1 A6  6
6 C1 B1 A7  7
7 C1 B1 A8  8
8 C1 B1 A9  9
9 C1 B1 A10  10
10 C1 B2 A1  11
11 C1 B2 A2  12
12 C1 B2 A3  13
13 C1 B2 A4  14
14 C1 B2 A5  15
15 C1 B2 A6  16
16 C1 B2 A7  17
17 C1 B2 A8  18
18 C1 B2 A9  19
19 C1 B2 A10  20
20 C1 B3 A1  21
21 C1 B3 A2  22
22 C1 B3 A3  23
23 C1 B3 A4  24
24 C1 B3 A5  25
25 C1 B3 A6  26
26 C1 B3 A7  27
27 C1 B3 A8  28
28 C1 B3 A9  29
29 C1 B3 A10  30
.. .. .. ... ...
70 C2 B3 A1  71
71 C2 B3 A2  72
72 C2 B3 A3  73
73 C2 B3 A4  74
74 C2 B3 A5  75
75 C2 B3 A6  76
76 C2 B3 A7  77
77 C2 B3 A8  78
78 C2 B3 A9  79
79 C2 B3 A10  80
80 C2 B4 A1  81
81 C2 B4 A2  82
82 C2 B4 A3  83
83 C2 B4 A4  84
84 C2 B4 A5  85
85 C2 B4 A6  86
86 C2 B4 A7  87
87 C2 B4 A8  88
88 C2 B4 A9  89
89 C2 B4 A10  90
90 C2 B5 A1  91
91 C2 B5 A2  92
92 C2 B5 A3  93
93 C2 B5 A4  94
94 C2 B5 A5  95
95 C2 B5 A6  96
96 C2 B5 A7  97
97 C2 B5 A8  98
98 C2 B5 A9  99
99 C2 B5 A10 100
[100 rows x 4 columns]
'''

以上这篇Python实现把多维数组展开成DataFrame就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Flask框架踩坑之ajax跨域请求实现

    Flask框架踩坑之ajax跨域请求实现

    这篇文章主要介绍了Flask框架踩坑之ajax跨域请求实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • PyautoGui常用教程(一篇掌握)

    PyautoGui常用教程(一篇掌握)

    这篇文章主要介绍了PyautoGui常用教程(一篇掌握),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python sklearn 中的 make_blobs() 函数示例详解

    Python sklearn 中的 make_blobs() 函数示例详解

    make_blobs() 是 sklearn.datasets中的一个函数,这篇文章主要介绍了Python sklearn 中的 make_blobs() 函数,本文结合实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2023-02-02
  • Python实现OpenCV的安装与使用示例

    Python实现OpenCV的安装与使用示例

    这篇文章主要介绍了Python实现OpenCV的安装与使用,结合实例形式分析了Python中OpenCV的安装及针对图片的相关操作技巧,需要的朋友可以参考下
    2018-03-03
  • Linux上安装Python的PIL和Pillow库处理图片的实例教程

    Linux上安装Python的PIL和Pillow库处理图片的实例教程

    这里我们来看一下在Linux上安装Python的PIL和Pillow库处理图片的实例教程,包括一个使用Pillow库实现批量转换图片的例子:
    2016-06-06
  • Flask进阶之构建RESTful API和数据库交互操作

    Flask进阶之构建RESTful API和数据库交互操作

    这篇文章主要为大家介绍了Flask进阶之构建RESTful API和数据库交互操作示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Python读取JSON文件及一些常见的陷阱和改进方法

    Python读取JSON文件及一些常见的陷阱和改进方法

    在Python编程中处理JSON文件是一项基本但关键的技能,文章通过一个简单的读取JSON文件的代码示例出发,分析了代码中存在的问题,将遇到的问题解决方法介绍也非常详细,需要的朋友可以参考下
    2024-10-10
  • Python使用ffmpy将amr格式的音频转化为mp3格式的例子

    Python使用ffmpy将amr格式的音频转化为mp3格式的例子

    今天小编就为大家分享一篇Python使用ffmpy将amr格式的音频转化为mp3格式的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 使用Python实现一个优雅的异步定时器

    使用Python实现一个优雅的异步定时器

    在 Python 中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于 asyncio 和 threading 模块,可扩展的异步定时器实现,需要的朋友可以参考下
    2025-04-04
  • Python3 assert断言实现原理解析

    Python3 assert断言实现原理解析

    这篇文章主要介绍了Python3 assert断言实现原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03

最新评论