opencv3/C++图像像素操作详解

 更新时间:2019年12月10日 16:37:06   作者:阿卡蒂奥  
今天小编就为大家分享一篇opencv3/C++图像像素操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

RGB图像转灰度图

RGB图像转换为灰度图时通常使用:

进行转换,以下尝试通过其他对图像像素操作的方式将RGB图像转换为灰度图像。

#include<opencv2/opencv.hpp>
#include<math.h>
using namespace cv;

int main()
{
 //像素操作
 Mat src,dst;
 src = imread("E:/image/image/daibola.jpg");
 if(src.empty())
 {
  printf("can not load image \n");
  return -1;
 }

 namedWindow("input");
 imshow("input",src);

 dst.create(src.size(), src.type());

 for(int row = 0; row < src.rows; row++)
 {
  for(int col = 0; col < src.cols; col++)
  {
   int b = src.at<Vec3b>(row, col)[0];
   int g = src.at<Vec3b>(row, col)[1];
   int r = src.at<Vec3b>(row, col)[2];
   dst.at<Vec3b>(row, col)[0] = max(r,max(g,b));
   dst.at<Vec3b>(row, col)[1] = max(r,max(g,b));
   dst.at<Vec3b>(row, col)[2] = max(r,max(g,b));

  }
 }

 namedWindow("output");
 imshow("output",dst);
 waitKey();

}

同理使用min(r,min(g,b))可以看到由于选择了较小的灰度值图像会明显变暗:

图像线性增强

通过对图像像素操作(线性变换),实现图像的线性增强。

#include<opencv2/opencv.hpp>
#include<math.h>
using namespace cv;

int main()
{
 Mat src1, dst;
 src1 = imread("E:/image/image/im1.jpg");
 if(src1.empty())
 {
  printf("can not load im1 \n");
  return -1;
 }
 double alpha = 1.2, beta = 50;
 dst = Mat::zeros(src1.size(), src1.type());
 for(int row = 0; row < src1.rows; row++)
 {
  for(int col = 0; col < src1.cols; col++)
  {
   if(src1.channels() == 3)
   {
    int b = src1.at<Vec3b>(row, col)[0]; 
    int g = src1.at<Vec3b>(row, col)[1]; 
    int r = src1.at<Vec3b>(row, col)[2]; 

    dst.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b*alpha + beta); 
    dst.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g*alpha + beta); 
    dst.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r*alpha + beta); 
   }
   else if (src1.channels() == 1)
   {
    float v = src1.at<uchar>(row, col); 
    dst.at<uchar>(row, col) = saturate_cast<uchar>(v*alpha + beta);
   }
  }
 }

 namedWindow("output",CV_WINDOW_AUTOSIZE);
 imshow("output", dst);
 waitKey();
 return 0;
}

掩膜操作调整图像对比度

使用一个3×3掩模增强图像对比度:

#include<opencv2/opencv.hpp>
#include<math.h>
using namespace cv;

int main()
{
 Mat src, dst;
 src = imread("E:/image/image/daibola.jpg");
 CV_Assert(src.depth() == CV_8U);
 if(!src.data)
 {
  printf("can not load image \n");
  return -1;
 }

 src.copyTo(dst);
 for(int row = 1; row<(src.rows - 1); row++)
 {
  const uchar* previous = src.ptr<uchar>(row - 1);
  const uchar* current = src.ptr<uchar>(row);
  const uchar* next = src.ptr<uchar>(row + 1);
  uchar* output = dst.ptr<uchar>(row);
  for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++)
  {
   *output = saturate_cast<uchar>(9 * current[col] - 2*previous[col] - 2*next[col] - 2*current[col - src.channels()] - 2*current[col + src.channels()]);
   output++;
  }
 }

 namedWindow("image", CV_WINDOW_AUTOSIZE);
 imshow("image",dst);
 waitKey();
 return 0;
}

像素重映射

利用cv::remap实现像素重映射;

cv::remap参数说明:

Remap(
InputArray src,// 输入图像
OutputArray dst,// 输出图像
InputArray map1,// 映射表1(CV_32FC1/CV_32FC2)
InputArray map2,// 映射表2(CV_32FC1/CV_32FC2)
int interpolation,// 选择的插值
int borderMode,// 边界类型(BORDER_CONSTANT)
const Scalar borderValue// 颜色 
)

插值方法:

CV_INTER_NN =0, 
CV_INTER_LINEAR =1, 
CV_INTER_CUBIC =2, 
CV_INTER_AREA =3, 
CV_INTER_LANCZOS4 =4

通过像素重映射实现图像垂直翻转:

#include<opencv2/opencv.hpp>
using namespace cv;

int main()
{
 Mat src,dst;
 src = imread("E:/image/image/daibola.jpg");
 if(src.empty())
 {
  printf("can not load image \n");
  return -1;
 }
 namedWindow("input", CV_WINDOW_AUTOSIZE);
 imshow("input", src);
 Mat mapx,mapy;
 mapx.create(src.size(), CV_32FC1);
 mapy.create(src.size(), CV_32FC1);
 for(int row = 0; row < src.rows; row++)
 {
  for(int col = 0; col < src.cols; col++)
  {
   mapx.at<float>(row, col) = col;
   mapy.at<float>(row, col) = src.rows - row - 1;
  }
 }
 remap(src, dst, mapx, mapy, CV_INTER_NN, BORDER_CONSTANT, Scalar(0,255,255));

 namedWindow("output", CV_WINDOW_AUTOSIZE);
 imshow("output",dst);
 waitKey();
 return 0;
}

以上这篇opencv3/C++图像像素操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python 类,对象,数据分类,函数参数传递详解

    Python 类,对象,数据分类,函数参数传递详解

    这篇文章主要介绍了深入理解Python 类,对象,数据分类,函数参数传递,涉及具体代码示例,具有一定参考价值,需要的朋友可以了解下。
    2021-09-09
  • python变量类型、输入、输出运算符介绍举例

    python变量类型、输入、输出运算符介绍举例

    Python是一种功能强大的编程语言,支持多种数据类型和运算符,它强调代码的可读性和简洁性,变量在Python中是动态类型的,不需要显式声明类型,这篇文章主要介绍了python变量类型、输入、输出运算符的相关资料,需要的朋友可以参考下
    2024-11-11
  • Python使用Pexpect库实现自动化与终端交互的任务

    Python使用Pexpect库实现自动化与终端交互的任务

    Pexpect 是一个 Python 库,用于自动化与终端交互的任务,它提供了一种简单的方式来编写脚本,以便与终端程序进行交互,下面我们就来深入了解一下Pexpect库的具体使用吧
    2023-12-12
  • Python中迭代器的创建与使用详解

    Python中迭代器的创建与使用详解

    Python中的迭代器是一个对象,用于迭代可迭代对象,如列表,元组,字典和集合,这篇文章主要为大家介绍了Python中迭代器的创建与使用,需要的可以参考下
    2023-08-08
  • Python异常处理机制结构实例解析

    Python异常处理机制结构实例解析

    这篇文章主要介绍了Python异常处理机制结构实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • Python pandas入门系列之众数和分位数

    Python pandas入门系列之众数和分位数

    分位数(Quantile),也称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,分析其数据变量的趋势,而众数(Mode)是代表数据的一般水平,这篇文章主要给大家介绍了Python pandas系列之众数和分位数的相关资料,需要的朋友可以参考下
    2021-08-08
  • python正则表达式中匹配次数与贪心问题详解(+ ?*)

    python正则表达式中匹配次数与贪心问题详解(+ ?*)

    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配,下面这篇文章主要给大家介绍了关于python正则表达式中匹配次数与贪心问题(+ ?*)的相关资料,需要的朋友可以参考下
    2022-10-10
  • Python重写父类的三种方法小结

    Python重写父类的三种方法小结

    本文主要介绍了Python重写父类的三种方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python3中关于excel追加写入格式被覆盖问题(实例代码)

    python3中关于excel追加写入格式被覆盖问题(实例代码)

    这篇文章主要介绍了python3中关于excel追加写入格式被覆盖问题,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-01-01
  • Python配置pip国内镜像源的实现

    Python配置pip国内镜像源的实现

    这篇文章主要介绍了Python配置pip国内镜像源的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08

最新评论