python 比较2张图片的相似度的方法示例

 更新时间:2019年12月18日 11:20:00   作者:mse0520  
这篇文章主要介绍了python 比较2张图片的相似度的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

本文介绍了python 比较2张图片的相似度的方法示例,分享给大家,具体如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
 
#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str
 
#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n
 
img1=cv2.imread('A.png')
img2=cv2.imread('B.png')
hash1= aHash(img1)
hash2= aHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '均值哈希算法相似度:'+ str(n)
 
hash1= dHash(img1)
hash2= dHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print '差值哈希算法相似度:'+ str(n)

讲解

相似图像搜索的哈希算法有三种:

  • 均值哈希算法
  • 差值哈希算法
  • 感知哈希算法
  • 均值哈希算法

步骤

缩放:图片缩放为8*8,保留结构,出去细节。
灰度化:转换为256阶灰度图。
求平均值:计算灰度图所有像素的平均值。
比较:像素值大于平均值记作1,相反记作0,总共64位。
生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

代码实现: 

#均值哈希算法
def aHash(img):
  #缩放为8*8
  img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
  #转换为灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  #s为像素和初值为0,hash_str为hash值初值为''
  s=0
  hash_str=''
  #遍历累加求像素和
  for i in range(8):
    for j in range(8):
      s=s+gray[i,j]
  #求平均灰度
  avg=s/64
  #灰度大于平均值为1相反为0生成图片的hash值
  for i in range(8):
    for j in range(8):
      if gray[i,j]>avg:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'      
  return hash_str

差值哈希算法

差值哈希算法前期和后期基本相同,只有中间比较hash有变化。

步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

#差值感知算法
def dHash(img):
  #缩放8*8
  img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
  #转换灰度图
  gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  hash_str=''
  #每行前一个像素大于后一个像素为1,相反为0,生成哈希
  for i in range(8):
    for j in range(8):
      if  gray[i,j]>gray[i,j+1]:
        hash_str=hash_str+'1'
      else:
        hash_str=hash_str+'0'
  return hash_str

感知哈希算法

感知哈希算法可以参考
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三)
讲的很详细了。

Hash值对比

由于返回值为str字符串,所以直接遍历字符串进行比对。

#Hash值对比
def cmpHash(hash1,hash2):
  n=0
  #hash长度不同则返回-1代表传参出错
  if len(hash1)!=len(hash2):
    return -1
  #遍历判断
  for i in range(len(hash1)):
    #不相等则n计数+1,n最终为相似度
    if hash1[i]!=hash2[i]:
      n=n+1
  return n

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • django有外键关系的两张表如何相互查找

    django有外键关系的两张表如何相互查找

    这篇文章主要介绍了django有外键关系的两张表如何相互查找,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python获取当前公网ip并自动断开宽带连接实例代码

    Python获取当前公网ip并自动断开宽带连接实例代码

    这篇文章主要介绍了Python获取当前公网ip并自动断开宽带连接实例代码,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • 基于Python实现植物大战僵尸游戏的示例代码

    基于Python实现植物大战僵尸游戏的示例代码

    植物大战僵尸是一款经典的塔防类游戏,玩家通过种植各种植物来抵御僵尸的攻击,本文将详细介绍如何使用Python和Pygame库来实现一个简单的植物大战僵尸游戏,文中通过代码示例讲解的非常详细,感兴趣的小伙伴跟着小编一起来看看吧
    2024-10-10
  • Python Flask自定义URL路由参数过滤器的方法详解

    Python Flask自定义URL路由参数过滤器的方法详解

    Flask是一个轻量级的Python Web应用框架,它允许开发者以一种简洁明了的方式来构建Web应用,Flask自定义URL的主要功能在于使得开发者能够通过简单的路由规则来自定义应用程序的URL结构,本文给大家介绍了Python Flask自定义URL路由参数过滤器的方法,需要的朋友可以参考下
    2024-07-07
  • Pydantic和.env文件管理环境配置

    Pydantic和.env文件管理环境配置

    Pydantic 是一个 Python 第三方包,本文主要介绍了Pydantic和.env文件管理环境配置,具有一定的参考价值,感兴趣的可以了解一下
    2025-04-04
  • Flask搭建虚拟环境并运行第一个flask程序

    Flask搭建虚拟环境并运行第一个flask程序

    这篇文章主要介绍了Flask搭建虚拟环境并运行第一个flask程序,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • OpenCV-Python实现通用形态学函数

    OpenCV-Python实现通用形态学函数

    本文将结合实例代码,介绍OpenCV-Python实现通用形态学函数,包含开运算,闭运算等复杂的形态学运算,需要的朋友们下面随着小编来一起学习学习吧
    2021-06-06
  • Python用20行代码实现完整邮件功能

    Python用20行代码实现完整邮件功能

    这篇文章主要介绍了如何使用Python实现完整邮件功能的相关资料,需要的朋友可以参考下面文章内容,希望能帮助到您
    2021-09-09
  • selenium鼠标操作实战案例详解

    selenium鼠标操作实战案例详解

    在实际场景中,会有单击、长时间单击、双击、右键、拖拽等鼠标操作,selenium提供了名为ActionChains的类来处理这些操作,下面这篇文章主要给大家介绍了关于selenium鼠标操作实战案例的相关资料,需要的朋友可以参考下
    2023-05-05
  • pandas之分组groupby()的使用整理与总结

    pandas之分组groupby()的使用整理与总结

    这篇文章主要介绍了pandas之分组groupby()的使用整理与总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06

最新评论