pytorch 图像预处理之减去均值,除以方差的实例

 更新时间:2020年01月02日 09:58:41   作者:WYXHAHAHA123  
今天小编就为大家分享一篇pytorch 图像预处理之减去均值,除以方差的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

#coding=gbk
'''
GPU上面的环境变化太复杂,这里我直接给出在笔记本CPU上面的运行时间结果

由于方式3需要将tensor转换到GPU上面,这一过程很消耗时间,大概需要十秒,故而果断抛弃这样的做法

img (168, 300, 3)
sub div in numpy,time 0.0110
sub div in torch.tensor,time 0.0070
sub div in torch.tensor with torchvision.transforms,time 0.0050
tensor1=tensor2
tensor2=tensor3


img (1079, 1349, 3)
sub div in numpy,time 0.1899
sub div in torch.tensor,time 0.1469
sub div in torch.tensor with torchvision.transforms,time 0.1109
tensor1=tensor2
tensor2=tensor3


耗时最久的是numpy,其次是转换成torch.tensor,最快的是直接使用torchvision.transforms
我现在在GPU上面跑的程序GPU利用率特别低(大多数时间维持在2%左右,只有很少数的时间超过80%)
然后设置打印点调试程序时发现,getitem()输出一张图像的时间在0.1秒的数量级,这对于GPU而言是非常慢的
因为GPU计算速度很快,CPU加载图像和预处理图像的速度赶不上GPU的计算速度,就会导致显卡大量时间处于空闲状态
经过对于图像I/O部分代码的定位,发现是使用numpy减去图像均值除以方差这一操作浪费了太多时间,而且输入图像的分辨率越大,
所消耗的时间就会更多
原则上,图像预处理每个阶段的时间需要维持在0.01秒的数量级

所以,

'''

import numpy as np
import time
import torch
import torchvision.transforms as transforms
import cv2
# img_path='/ssddata2/wyx/detection/ead_stage12/stage12_img/WL_00387.jpg'
img_path='F:\\2\\00004.jpg'
PIXEL_MEANS =(0.485, 0.456, 0.406)  #RGB format mean and variances
PIXEL_STDS = (0.229, 0.224, 0.225)

#输入文件路径,输出的应该是转换成torch.tensor的标准形式

#方式一  在numpy中进行减去均值除以方差,最后转换成torch.tensor
one_start=time.time()
img=cv2.imread(img_path)
img=img[:,:,::-1]
img=img.astype(np.float32, copy=False)
img/=255.0
img-=np.array(PIXEL_MEANS)
img/=np.array(PIXEL_STDS)
tensor1=torch.from_numpy(img.copy())
tensor1=tensor1.permute(2,0,1)
one_end=time.time()
print('sub div in numpy,time {:.4f}'.format(one_end-one_start))

del img

#方式二 转换成torch.tensor,再减去均值除以方差
two_start=time.time()
img=cv2.imread(img_path)
img=img[:,:,::-1]
print('img',img.shape,np.min(img),np.min(img))
tensor2=torch.from_numpy(img.copy()).float()
tensor2/=255.0
tensor2-=torch.tensor(PIXEL_MEANS)
tensor2/=torch.tensor(PIXEL_STDS)
tensor2=tensor2.permute(2,0,1)
two_end=time.time()
print('sub div in torch.tensor,time {:.4f}'.format(two_end-two_start))

del img

#方式三 转换成torch.tensor,再放到GPU上面,最后减去均值除以方差
# three_start=time.time()
# img=cv2.imread(img_path)
# img=img[:,:,::-1]
# tensor3=torch.from_numpy(img.copy()).cuda().float()
# tensor3-=torch.tensor(PIXEL_MEANS).cuda()
# tensor3/=torch.tensor(PIXEL_STDS).cuda()
# three_end=time.time()
# print('sub div in torch.tensor on cuda,time {:.4f}'.format(three_end-three_start))

# del img

#方式四 转换成torch.tensor,使用transform方法减去均值除以方差
four_start=time.time()
img=cv2.imread(img_path)
img=img[:,:,::-1]
transform=transforms.Compose(
  [transforms.ToTensor(),transforms.Normalize(PIXEL_MEANS, PIXEL_STDS)]
)
tensor4=transform(img.copy())
four_end=time.time()
print('sub div in torch.tensor with torchvision.transforms,time {:.4f}'.format(four_end-four_start))

del img

if torch.sum(tensor1-tensor2)<=1e-3:
  print('tensor1=tensor2')
if torch.sum(tensor2-tensor4)==0:
  print('tensor2=tensor3')
# if tensor3==tensor4:
#   print('tensor3=tensor4')

以上这篇pytorch 图像预处理之减去均值,除以方差的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Keras load_model 导入错误的解决方式

    Keras load_model 导入错误的解决方式

    这篇文章主要介绍了Keras load_model 导入错误的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python遍历目录中的所有文件的方法

    Python遍历目录中的所有文件的方法

    Pyhton中我们一般使用os.walk生成器来获取文件夹中的所有文件,这里我们就来详细看一下Python遍历目录中的所有文件的方法,包括一个进阶的利用fnmatch模块进行匹配的方法:
    2016-07-07
  • 利用LyScript实现应用层钩子扫描器

    利用LyScript实现应用层钩子扫描器

    Capstone 是一个轻量级的多平台、多架构的反汇编框架。本篇文章将运用LyScript插件结合Capstone反汇编引擎实现一个钩子扫描器,感兴趣的可以了解一下
    2022-08-08
  • Python 如何对文件目录操作

    Python 如何对文件目录操作

    这篇文章主要介绍了Python 如何对文件目录操作,文中示例代码非常详细,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • 老生常谈python中的重载

    老生常谈python中的重载

    所谓重载,就是多个相同函数名的函数,根据传入的参数个数,参数类型而执行不同的功能。所以函数重载实质上是为了解决编程中参数可变不统一的问题。这篇文章主要介绍了老生常谈python中的重载,需要的朋友可以参考下
    2018-11-11
  • Python 解决相对路径问题:

    Python 解决相对路径问题:"No such file or directory"

    这篇文章主要介绍了Python 解决相对路径问题:"No such file or directory"具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python实现自动整理文件的脚本

    Python实现自动整理文件的脚本

    这篇文章主要介绍了Python实现自动整理文件的脚本,帮助大家更好的利用python处理文件,感兴趣的朋友可以了解下
    2020-12-12
  • python爬虫入门教程--正则表达式完全指南(五)

    python爬虫入门教程--正则表达式完全指南(五)

    要想做爬虫,不可避免的要用到正则表达式,如果是简单的字符串处理,类似于split,substring等等就足够了,可是涉及到比较复杂的匹配,当然是正则的天下,下面这篇文章主要给大家介绍了python爬虫之正则表达式的相关资料,需要的朋友可以参考下。
    2017-05-05
  • 深入理解Django自定义信号(signals)

    深入理解Django自定义信号(signals)

    这篇文章主要介绍了深入理解Django自定义信号(signals),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-10-10
  • Python访问MySQL封装的常用类实例

    Python访问MySQL封装的常用类实例

    这篇文章主要介绍了Python访问MySQL封装的常用类,实例详述了针对MySQL使用query执行select及使用update进行insert、delete等操作的方法,需要的朋友可以参考下
    2014-11-11

最新评论