PyTorch中的padding(边缘填充)操作方式

 更新时间:2020年01月03日 09:43:33   作者:hyk_1996  
今天小编就为大家分享一篇PyTorch中的padding(边缘填充)操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

简介

我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素,而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。

因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变。例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素;若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素;也就是padding大小一般设定为核大小的一半。在pytorch的卷积层定义中,默认的padding为零填充。

self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=7, padding=3)

padding的种类及其pytorch定义

padding,即边缘填充,可以分为四类:零填充,常数填充,镜像填充,重复填充。

1.零填充

对图像或者张量的边缘进行补零填充操作:

class ZeroPad2d(ConstantPad2d):
 # Pads the input tensor boundaries with zero.
 def __init__(self, padding):
  super(ZeroPad2d, self).__init__(padding, 0)

2.常数填充

定义一个常数来对图像或者张量的边缘进行填充,若该常数等于0则等价于零填充。

class ConstantPad2d(_ConstantPadNd):
 # Pads the input tensor boundaries with a constant value.
 def __init__(self, padding, value):
  super(ConstantPad2d, self).__init__(value)
  self.padding = _quadruple(padding)

3.镜像填充

对图像或者张量的边缘进行镜像对称的填充,示例如下:

>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
 5 4 3 4 5 4 3
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
class ReflectionPad2d(_ReflectionPadNd):
 # Pads the input tensor using the reflection of the input boundary.
 
 def __init__(self, padding):
  super(ReflectionPad2d, self).__init__()
  self.padding = _quadruple(padding)

4.重复填充

对图像或者张量的边缘进行重复填充,就是说直接用边缘的像素值来填充。示例如下:

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 3 3 3 4 5 5 5
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
[torch.FloatTensor of size (1,1,7,7)]
class ReplicationPad2d(_ReplicationPadNd):
 # Pads the input tensor using replication of the input boundary.
 
 def __init__(self, padding):
  super(ReplicationPad2d, self).__init__()
  self.padding = _quadruple(padding)

实际应用

在许多计算机视觉任务中,例如图像分类,zero padding已经能够满足要求。但是不结合实际地乱用也是不行的。比方说,在图像增强/图像生成领域,zero padding可能会导致边缘出现伪影,如下所示:

这时候,可以改用镜像填充来代替零填充操作。我们定义一个新的padding层,然后把卷积层里的padding参数置为0.

具体写法如下:

class DEMO(nn.Module):
 
 def __init__(self):
  super(DEMO, self).__init__()
  self.pad = nn.ReflectionPad2d(1)
  self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0)
 
 def forward(self, x):
  x = self.pad(x)
  x = self.conv(x)
  return F.relu(x)

以低光照增强任务为例,最终对比效果如下图。零填充会产生边缘伪影,而镜像填充很好地缓解了这一效应。

以上这篇PyTorch中的padding(边缘填充)操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python实现将Word和Excel文件转换为PPT

    Python实现将Word和Excel文件转换为PPT

    在日常工作中,我们经常需要将多个Word文档或Excel表格的内容汇总到一个PPT演示文稿中,手动执行这项任务可能非常耗时,因此,使用Python自动化这个过程可以大大提高效率,所以本文给大家介绍了Python实现将Word和Excel文件转换为PPT,需要的朋友可以参考下
    2024-08-08
  • Python命名空间详解

    Python命名空间详解

    这篇文章主要介绍了Python命名空间详解,非常重要的概念,需要的朋友可以参考下
    2014-08-08
  • python模拟练习题总结(附答案)

    python模拟练习题总结(附答案)

    这篇文章主要给大家介绍了关于python模拟练习题的相关资料,文中涉及质因数分解、开根变换、立方体拼接、日期计算、按位异或、停车场收费、整数操作、减法运算、相邻数之和、以及最长勾子序列的寻找,每题都有具体的输入输出示例和代码计算过程,需要的朋友可以参考下
    2024-11-11
  • 如何使用Python处理HDF格式数据及可视化问题

    如何使用Python处理HDF格式数据及可视化问题

    这篇文章主要介绍了如何使用Python处理HDF格式数据及可视化问题,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06
  • python实现在多维数组中挑选符合条件的全部元素

    python实现在多维数组中挑选符合条件的全部元素

    今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python 超时请求或计算的处理方案

    Python 超时请求或计算的处理方案

    这篇文章主要介绍了Python 超时请求或计算的处理方案,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-06-06
  • Python黑魔法之metaclass详情

    Python黑魔法之metaclass详情

    Python 有很多黑魔法,为了不分你的心,今天只讲 metaclass。对于 metaclass 这种特性,有两种极端的观点:下面小编将为大家详细的介绍,刚兴趣的小伙伴可以参考一下
    2021-09-09
  • 使用Pandas如何读取多个分隔方式的文件

    使用Pandas如何读取多个分隔方式的文件

    这篇文章主要介绍了使用Pandas如何读取多个分隔方式的文件问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • 用代码帮你了解Python基础(3)

    用代码帮你了解Python基础(3)

    这篇文章主要用代码帮你了解Python基础,使用循环,字典和集合的示例代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • Pytorch搭建YoloV5目标检测平台实现过程

    Pytorch搭建YoloV5目标检测平台实现过程

    这篇文章主要为大家介绍了Pytorch搭建YoloV5目标检测平台实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-04-04

最新评论