pytorch载入预训练模型后,实现训练指定层

 更新时间:2020年01月06日 09:46:50   作者:慕白-  
今天小编就为大家分享一篇pytorch载入预训练模型后,实现训练指定层,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1、有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练:

pretrained_params = torch.load('Pretrained_Model')
model = The_New_Model(xxx)
model.load_state_dict(pretrained_params.state_dict(), strict=False)

strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃。

2、如果载入的这些参数中,有些参数不要求被更新,即固定不变,不参与训练,需要手动设置这些参数的梯度属性为Fasle,并且在optimizer传参时筛选掉这些参数:

# 载入预训练模型参数后...
for name, value in model.named_parameters():
  if name 满足某些条件:
    value.requires_grad = False

# setup optimizer
params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(params, lr=1e-4)

将满足条件的参数的 requires_grad 属性设置为False, 同时 filter 函数将模型中属性 requires_grad = True 的参数帅选出来,传到优化器(以Adam为例)中,只有这些参数会被求导数和更新。

3、如果载入的这些参数中,所有参数都更新,但要求一些参数和另一些参数的更新速度(学习率learning rate)不一样,最好知道这些参数的名称都有什么:

# 载入预训练模型参数后...
for name, value in model.named_parameters():
  print(name)
# 或
print(model.state_dict().keys())

假设该模型中有encoder,viewer和decoder两部分,参数名称分别是:

'encoder.visual_emb.0.weight',
'encoder.visual_emb.0.bias',
'viewer.bd.Wsi',
'viewer.bd.bias',
'decoder.core.layer_0.weight_ih',
'decoder.core.layer_0.weight_hh',

假设要求encode、viewer的学习率为1e-6, decoder的学习率为1e-4,那么在将参数传入优化器时:

ignored_params = list(map(id, model.decoder.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer = torch.optim.Adam([{'params':base_params,'lr':1e-6},
               {'params':model.decoder.parameters()}
               ],
               lr=1e-4, momentum=0.9)

代码的结果是除decoder参数的learning_rate=1e-4 外,其他参数的额learning_rate=1e-6。

在传入optimizer时,和一般的传参方法torch.optim.Adam(model.parameters(), lr=xxx) 不同,参数部分用了一个list, list的每个元素有params和lr两个键值。如果没有 lr则应用Adam的lr属性。Adam的属性除了lr, 其他都是参数所共有的(比如momentum)。

以上这篇pytorch载入预训练模型后,实现训练指定层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

参考:

pytorch官方文档

https://www.jb51.net/article/134943.htm

相关文章

  • python实现大文本文件分割成多个小文件

    python实现大文本文件分割成多个小文件

    这篇文章主要为大家详细介绍了python实现大文本文件分割成多个小文件,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04
  • python Flask实现restful api service

    python Flask实现restful api service

    本篇文章主要介绍了python Flask实现restful api service,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • python 实现将Numpy数组保存为图像

    python 实现将Numpy数组保存为图像

    今天小编就为大家分享一篇python 实现将Numpy数组保存为图像,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python中实现地图可视化的方法小结

    Python中实现地图可视化的方法小结

    Python提供了多个强大的库,如Folium、Matplotlib、Geopandas等,使得创建漂亮而具有信息量的地图变得简单而灵活,本文将详细介绍如何使用这些库绘制漂亮的地图,感兴趣的可以了解下
    2023-12-12
  • 浅析python实现动态规划背包问题

    浅析python实现动态规划背包问题

    这篇文章主要介绍了python实现动态规划背包问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • hmac模块生成加入了密钥的消息摘要详解

    hmac模块生成加入了密钥的消息摘要详解

    这篇文章主要介绍了hmac模块生成加入了密钥的消息摘要详解,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • 打包迁移Python env环境的三种方法总结

    打包迁移Python env环境的三种方法总结

    平常工作中可能遇到python虚拟环境迁移的场景,总结了如下几个方法,下面这篇文章主要给大家介绍了关于打包迁移Python env环境的三种方法,需要的朋友可以参考下
    2024-08-08
  • 在Python中使用Neo4j数据库的教程

    在Python中使用Neo4j数据库的教程

    这篇文章主要介绍了在Python中使用Neo4j数据库的教程,Neo4j是一个具有一定人气的非关系型的数据库,需要的朋友可以参考下
    2015-04-04
  • Python之自动获取公网IP的实例讲解

    Python之自动获取公网IP的实例讲解

    下面小编就为大家带来一篇Python之自动获取公网IP的实例讲解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • 浅谈python中的__init__、__new__和__call__方法

    浅谈python中的__init__、__new__和__call__方法

    这篇文章主要给大家介绍了关于python中__init__、__new__和__call__方法的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友可以参考学习,下面来跟着小编一起看看吧。
    2017-07-07

最新评论