pytorch 自定义参数不更新方式

 更新时间:2020年01月06日 09:56:54   作者:ShellCollector  
今天小编就为大家分享一篇pytorch 自定义参数不更新方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

nn.Module中定义参数:不需要加cuda,可以求导,反向传播

class BiFPN(nn.Module):
  def __init__(self, fpn_sizes):

  self.w1 = nn.Parameter(torch.rand(1))

  print("no---------------------------------------------------",self.w1.data, self.w1.grad)

下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度:

cy1 cd都有梯度

import torch
 
xP=torch.Tensor([[ 3233.8557, 3239.0657, 3243.4355, 3234.4507, 3241.7087,
     3243.7292, 3234.6826, 3237.6609, 3249.7937, 3244.8623,
     3239.5349, 3241.4626, 3251.3457, 3247.4263, 3236.4924,
     3251.5735, 3246.4731, 3242.4692, 3239.4958, 3247.7283,
     3251.7134, 3249.0237, 3247.5637],
    [ 1619.9011, 1619.7140, 1620.4883, 1620.0642, 1620.2191,
     1619.9796, 1617.6597, 1621.1522, 1621.0869, 1620.9725,
     1620.7130, 1620.6071, 1620.7437, 1621.4825, 1620.5107,
     1621.1519, 1620.8462, 1620.5944, 1619.8038, 1621.3364,
     1620.7399, 1621.1178, 1618.7080],
    [ 1619.9330, 1619.8542, 1620.5176, 1620.1167, 1620.1577,
     1620.0579, 1617.7155, 1621.1718, 1621.1338, 1620.9572,
     1620.6288, 1620.6621, 1620.7074, 1621.5305, 1620.5656,
     1621.2281, 1620.8346, 1620.6021, 1619.8228, 1621.3936,
     1620.7616, 1621.1954, 1618.7983],
    [ 1922.6078, 1922.5680, 1923.1331, 1922.6604, 1922.9589,
     1922.8818, 1920.4602, 1923.8107, 1924.0142, 1923.6907,
     1923.4465, 1923.2820, 1923.5728, 1924.4071, 1922.8853,
     1924.1107, 1923.5465, 1923.5121, 1922.4673, 1924.1871,
     1923.6248, 1923.9086, 1921.9496],
    [ 1922.5948, 1922.5311, 1923.2850, 1922.6613, 1922.9734,
     1922.9271, 1920.5950, 1923.8757, 1924.0422, 1923.7318,
     1923.4889, 1923.3296, 1923.5752, 1924.4948, 1922.9866,
     1924.1642, 1923.6427, 1923.6067, 1922.5214, 1924.2761,
     1923.6636, 1923.9481, 1921.9005]])
 
yP=torch.Tensor([[ 2577.7729, 2590.9868, 2600.9712, 2579.0195, 2596.3684,
     2602.2771, 2584.0305, 2584.7749, 2615.4897, 2603.3164,
     2589.8406, 2595.3486, 2621.9116, 2608.2820, 2582.9534,
     2619.2073, 2607.1233, 2597.7888, 2591.5735, 2608.9060,
     2620.8992, 2613.3511, 2614.2195],
    [ 673.7830,  693.8904,  709.2661,  675.4254,  702.4049,
      711.2085,  683.1571,  684.6160,  731.3878,  712.7546,
      692.3011,  701.0069,  740.6815,  720.4229,  681.8199,
      736.9869,  718.5508,  704.3666,  695.0511,  721.5912,
      739.6672,  728.0584,  729.3143],
    [ 673.8367,  693.9529,  709.3196,  675.5266,  702.3820,
      711.2159,  683.2151,  684.6421,  731.5291,  712.6366,
      692.1913,  701.0057,  740.6229,  720.4082,  681.8656,
      737.0168,  718.4943,  704.2719,  695.0775,  721.5616,
      739.7233,  728.1235,  729.3387],
    [ 872.9419,  891.7061,  905.8004,  874.6565,  899.2053,
      907.5082,  881.5528,  883.0028,  926.3083,  908.9742,
      890.0403,  897.8606,  934.6913,  916.0902,  880.4689,
      931.3562,  914.4233,  901.2154,  892.5759,  916.9590,
      933.9291,  923.0745,  924.4461],
    [ 872.9661,  891.7683,  905.8128,  874.6301,  899.2887,
      907.5155,  881.6916,  883.0234,  926.3242,  908.9561,
      890.0731,  897.9221,  934.7324,  916.0806,  880.4300,
      931.3933,  914.5662,  901.2715,  892.5501,  916.9894,
      933.9813,  923.0823,  924.3654]])
 
 
shape=[4000, 6000]
cx,cy1=torch.rand(1,requires_grad=True),torch.rand(1,requires_grad=True)
 
cd=torch.rand(1,requires_grad=True)
ox,oy=cx,cy1
print('cx:{},cy:{}'.format(id(cx),id(cy1)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))
cx,cy=cx*shape[1],cy1*shape[0]
print('cx:{},cy:{}'.format(id(cx),id(cy)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))
distance=torch.sqrt(torch.pow((xP-cx),2)+torch.pow((yP-cy),2))
mean=torch.mean(distance,1)
starsFC=cd*torch.pow((distance-mean[...,None]),2)
loss=torch.sum(torch.mean(starsFC,1).squeeze(),0)
loss.backward()
print(loss)
print(cx)
print(cy1)
print("cx",cx.grad)
print("cy",cy1.grad)
print("cd",cd.grad)
print(ox.grad)
print(oy.grad)
print('cx:{},cy:{}'.format(id(cx),id(cy)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))

以上这篇pytorch 自定义参数不更新方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python基于pandas爬取网页表格数据

    Python基于pandas爬取网页表格数据

    这篇文章主要介绍了Python基于pandas获取网页表格数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Anaconda安装OpenCV的方法图文教程

    Anaconda安装OpenCV的方法图文教程

    在Anaconda里安装OpenCV的方法有很多,下面这篇文章主要给大家介绍了关于Anaconda安装OpenCV的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-09-09
  • 详解使用 pyenv 管理多个版本 python 环境

    详解使用 pyenv 管理多个版本 python 环境

    本篇文章主要介绍了详解使用 pyenv 管理多个版本 python 环境,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • python实现梯度法 python最速下降法

    python实现梯度法 python最速下降法

    这篇文章主要为大家详细介绍了python梯度法,最速下降法的原理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • 浅谈scrapy 的基本命令介绍

    浅谈scrapy 的基本命令介绍

    下面小编就为大家带来一篇浅谈scrapy 的基本命令介绍。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • Python中values()函数用法简单示例

    Python中values()函数用法简单示例

    这篇文章主要给大家介绍了关于Python中values()函数用法的相关资料,python内置的values()函数返回一个字典中所有的值,文中给出了代码示例,需要的朋友可以参考下
    2023-09-09
  • Python开发工具PyCharm的下载与安装步骤图文教程

    Python开发工具PyCharm的下载与安装步骤图文教程

    这篇文章主要为大家介绍了Python开发工具PyCharm的下载与安装步骤图文教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-07-07
  • Python如何生成requirements.txt

    Python如何生成requirements.txt

    在 Python 项目中,requirements.txt 文件通常用于列出项目依赖的库及其版本号,本文主要介绍了Python生成requirements.txt的几个常用方法,希望对大家有所帮助
    2025-02-02
  • 打包Python代码的常用方法实现程序exe应用

    打包Python代码的常用方法实现程序exe应用

    Python是一门强大的编程语言,但在将Python代码分享给其他人时,让他们安装Python解释器并运行脚本可能有点繁琐,这时,将Python代码打包成可执行的应用程序(.exe)可以大大简化这个过程,本文将介绍几种常用的方法,轻松地将Python代码变成独立的可执行文件
    2023-12-12
  • python之线程池map()方法传递多参数list

    python之线程池map()方法传递多参数list

    这篇文章主要介绍了python之线程池map()方法传递多参数list问题,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03

最新评论