Pytorch 神经网络—自定义数据集上实现教程

 更新时间:2020年01月07日 14:09:58   作者:LZDCQU  
今天小编就为大家分享一篇Pytorch 神经网络—自定义数据集上实现教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

第一步、导入需要的包

import os
import scipy.io as sio
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.autograd import Variable
batchSize = 128 # batchsize的大小
niter = 10   # epoch的最大值 

第二步、构建神经网络

设神经网络为如上图所示,输入层4个神经元,两层隐含层各4个神经元,输出层一个神经。每一层网络所做的都是线性变换,即y=W×X+b;代码实现如下:

class Neuralnetwork(nn.Module):
  def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
    super(Neuralnetwork, self).__init__()
    self.layer1 = nn.Linear(in_dim, n_hidden_1)
    self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
    self.layer3 = nn.Linear(n_hidden_2, out_dim)
 
  def forward(self, x):
    x = x.view(x.size(0), -1)
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    return x
 
model = Neuralnetwork(1*3, 4, 4, 1)
 
print(model) # net architecture
Neuralnetwork(
 (layer1): Linear(in_features=3, out_features=4, bias=True)
 (layer2): Linear(in_features=4, out_features=4, bias=True)
 (layer3): Linear(in_features=4, out_features=1, bias=True)
)

​​ 第三步、读取数据

自定义的数据为demo_SBPFea.mat,是MATLAB保存的数据格式,其存储的内容如下:包括fea(1000*3)和sbp(1000*1)两个数组;fea为特征向量,行为样本数,列为特征宽度;sbp为标签

class SBPEstimateDataset(Dataset):
 
  def __init__(self, ext='demo'):
  
    data = sio.loadmat(ext+'_SBPFea.mat')
    self.fea = data['fea']
    self.sbp = data['sbp']
    
  def __len__(self):
    
    return len(self.sbp)
 
  def __getitem__(self, idx):
 
    fea = self.fea[idx]
    sbp = self.sbp[idx]
    """Convert ndarrays to Tensors."""
    return {'fea': torch.from_numpy(fea).float(),
        'sbp': torch.from_numpy(sbp).float()
        }
    
train_dataset = SBPEstimateDataset(ext='demo')
train_loader = DataLoader(train_dataset, batch_size=batchSize, # 分批次训练
             shuffle=True, num_workers=int(8))

整个数据样本为1000,以batchSize = 128划分,分为8份,前7份为104个样本,第8份则为104个样本。在网络训练过程中,是一份数据一份数据进行训练的

第四步、模型训练

# 优化器,Adam 
optimizer = optim.Adam(list(model.parameters()), lr=0.0001, betas=(0.9, 0.999),weight_decay=0.004) 
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.997) 
criterion = nn.MSELoss() # loss function 
 
if torch.cuda.is_available(): # 有GPU,则用GPU计算
   model.cuda() 
   criterion.cuda() 
 
for epoch in range(niter): 
   losses = [] 
   ERROR_Train = [] 
   model.train() 
   for i, data in enumerate(train_loader, 0): 
     model.zero_grad()# 首先提取清零 
     real_cpu, label_cpu = data['fea'], data['sbp'] 
 
     if torch.cuda.is_available():# CUDA可用情况下,将Tensor 在GPU上运行 
       real_cpu = real_cpu.cuda() 
       label_cpu = label_cpu.cuda() 
 
 
       input=real_cpu 
       label=label_cpu 
 
       inputv = Variable(input) 
       labelv = Variable(label) 
 
       output = model(inputv) 
       err = criterion(output, labelv) 
       err.backward() 
       optimizer.step() 
 
       losses.append(err.data[0]) 
 
       error = output.data-label+ 1e-12 
       ERROR_Train.extend(error) 
 
   MAE = np.average(np.abs(np.array(ERROR_Train))) 
   ME = np.average(np.array(ERROR_Train)) 
   STD = np.std(np.array(ERROR_Train)) 
 
   print('[%d/%d] Loss: %.4f MAE: %.4f Mean Error: %.4f STD: %.4f' % ( 
   epoch, niter, np.average(losses), MAE, ME, STD))
   
   ​​
[0/10] Loss: 18384.6699 MAE: 135.3871 Mean Error: -135.3871 STD: 7.5580
[1/10] Loss: 17063.0215 MAE: 130.4145 Mean Error: -130.4145 STD: 7.8918
[2/10] Loss: 13689.1934 MAE: 116.6625 Mean Error: -116.6625 STD: 9.7946
[3/10] Loss: 8192.9053 MAE: 89.6611 Mean Error: -89.6611 STD: 12.9911
[4/10] Loss: 2979.1340 MAE: 52.5410 Mean Error: -52.5279 STD: 15.0930
[5/10] Loss: 599.7094 MAE: 22.2735 Mean Error: -19.9979 STD: 14.2069
[6/10] Loss: 207.2831 MAE: 11.2394 Mean Error: -4.8821 STD: 13.5528
[7/10] Loss: 189.8173 MAE: 9.8020 Mean Error: -1.2357 STD: 13.7095
[8/10] Loss: 188.3376 MAE: 9.6512 Mean Error: -0.6498 STD: 13.7075
[9/10] Loss: 186.8393 MAE: 9.6946 Mean Error: -1.0850 STD: 13.6332​
 

以上这篇Pytorch 神经网络—自定义数据集上实现教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 利用Python绘制虎年烟花秀

    利用Python绘制虎年烟花秀

    2022虎年新年即将来临,小编为大家带来了一个利用Python编写的虎年烟花特效,文中的示例代码简洁易懂,感兴趣的同学可以动手试一试
    2022-01-01
  • 教你用pyecharts绘制各种图表案例(效果+代码)

    教你用pyecharts绘制各种图表案例(效果+代码)

    说到pyecharts,相信很多人不会陌生,一个优秀的python可视化包,下面这篇文章主要给大家介绍了关于如何用pyecharts绘制各种图表案例的相关资料,需要的朋友可以参考下
    2022-06-06
  • 解决python中使用PYQT时中文乱码问题

    解决python中使用PYQT时中文乱码问题

    今天小编就为大家分享一篇解决python中使用PYQT时中文乱码问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python定时任务schedule库用法详细讲解

    python定时任务schedule库用法详细讲解

    python中有一个轻量级的定时任务调度的库schedule,下面这篇文章主要给大家介绍了关于python定时任务schedule库用法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-01-01
  • python scipy 稀疏矩阵的使用说明

    python scipy 稀疏矩阵的使用说明

    这篇文章主要介绍了python scipy 稀疏矩阵的使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Django 1.10以上版本 url 配置注意事项详解

    Django 1.10以上版本 url 配置注意事项详解

    这篇文章主要介绍了Django 1.10以上版本 url 配置注意事项详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 教你用pytorch训练五子棋ai示例代码

    教你用pytorch训练五子棋ai示例代码

    这篇文章主要介绍了五个与五子棋相关的Python文件,包括游戏逻辑、神经网络模型、训练代码以及玩家对战代码,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2025-03-03
  • python+selenium的web自动化上传操作的实现

    python+selenium的web自动化上传操作的实现

    这篇文章主要介绍了python+selenium的web自动化上传操作的实现,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
    2022-08-08
  • Python中的Numpy 面向数组编程常见操作

    Python中的Numpy 面向数组编程常见操作

    这篇文章主要介绍了Python中的Numpy 面向数组编程常见操作,使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题
    2022-07-07
  • python目标检测SSD算法训练部分源码详解

    python目标检测SSD算法训练部分源码详解

    这篇文章主要为大家介绍了python目标检测SSD算法训练部分源码详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05

最新评论